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General Introduction 
 

History of plant-herbivore interactions 

Dispersed fossils provide the earliest evidence for plant-(arthropod) herbivore 

interactions. Since the first land plants appeared ca. 450 million years ago, plant and 

herbivores formed one of the earliest terrestrial communities. That plants have been 

intensively consumed by herbivores since their arrival on land is shown in fossils with 

herbivory-damaged plant structures, e.g. spores, stems, leaves, roots and seeds (Labandeira, 

1998; Wellman and Gray, 2000). Maximizing fitness – contributing as many grandchildren 

as possible to following generations – is the ecological goal of both plants and herbivores 

(and all other organisms); however, herbivore attacks increase plant mortality and decrease 

plant growth and reproduction, and plant defense mechanism increase herbivore mortality 

and decrease herbivore growth and reproduction. This antagonistic relationship has formed 

the basis for strong natural selection pressure and spurred the evolution of new species of 

both plants and herbivores. Herbivores have co-evolved with plants, overcome their 

defenses and even utilizing defense compounds, while plants have evolved to increase their 

resistance against herbivore attack (Ehrlich and Raven, 1964; Berenbaum and Zangerl, 

1998) 

However, not all plant-herbivore interactions are equal. Among plant species and 

populations, there are different types of herbivory and levels of damage can be limited by 

geographic availability, structure, mechanical characteristics (physical barriers such as 

trichomes, thorns, resine, etc.) and chemical components (toxic compounds, e.g. nicotine, 

glucosinolates, phenolic compounds, etc.) of plants (Ehrlich and Raven, 1964). Around 

90% of herbivores are specialized to feed on a limited number of plants families (less than 

three different plant families) based on plant defense responses; these are known as 

specialist herbivores. Some herbivores can feed on a wide-range of plants and we usually 

refer to them as generalist herbivores (Futuyma and Gould, 1979; Meijden, 1996). 

 

Plant defense responses 

Plants are frequently exposed to various abiotic and biotic stresses such as high 

light, water deficit, salinity stress, variable temperature, lack of nutrients, pathogen and 
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herbivore attack. To survive in a multitude of harmful environmental conditions, plants 

have evolved sophisticated defense systems which can be categorized into two major types: 

direct defense and indirect defense. These can be either of constitutive or induced character 

(Kessler and Baldwin, 2002; Wu and Baldwin, 2010; Meldau et al., 2012). 

 

Direct defense vs. indirect defense 

Direct defense is a local mechanism that negatively affects herbivore growth and 

reproduction. It is mainly represented by mechanical defenses (physical structures) and 

chemical defenses (Schardl and Chen, 2001; Kessler and Baldwin, 2002). Mechanical 

defenses can be defined as various morphological or anatomical trait that leads to a fitness 

advantage for the plant by directly deterring herbivore feeding, for example sharp prickles, 

spines and thorns (spinescences), trichomes, resins, lignins and silica (Fordyce and 

Agrawal, 2001; Hanley et al., 2007; Konno, 2011). Chemical defenses are secondary 

metabolites which increase plant fitness in the face of herbivory by deterring herbivore 

performance, such as protease inhibitors (PIs) that can affect insect digestive enzymes in 

the gut (Jongsma et al., 1995; Zavala et al., 2004b; Hartl et al., 2010), toxic compounds 

(e.g., glucosinolates, alkaloids, terpenoids, phenolics) which are directly poisonous to 

herbivores, and generally any compounds which lead to appetite suppression, stupor, or 

death in herbivores (Duffey and Stout, 1996; Pichersky and Lewinsohn, 2011; Mithöfer and 

Boland, 2012).  

Indirect defenses do not directly affect herbivore performance, but attract natural 

enemies of herbivore such as predators and parasitoids that remove herbivores from plants 

(Halitschke et al., 2000; Kessler and Baldwin, 2002; Kessler and Heil, 2011). Release of 

volatile organic compounds (VOCs) from plants acts as a guide for natural enemies to 

reveal the location of feeding herbivores (Paschold et al., 2006; Dicke, 2009; Allmann and 

Baldwin, 2010). VOCs can also act as direct defenses by repelling ovipositing herbivores 

and thus avoiding infestation a single tobacco hornworm larvae requires several host plants 

to complete development (Kessler and Baldwin, 2001). Apart from VOCs, plants provide 

nutrients such as extrafloral nectar to attract natural enemies of herbivores (Heil et al., 

2004; Choh et al., 2006).  
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Constitutive defense vs. induced defense  

Plant defense responses can be categorized into two groups according to the timing 

of the presence of physical and chemical defensive compounds in plants. If these traits are 

expressed constantly, they are categorized as constitutive defenses. Defenses that are 

expressed only after herbivore attack are called induced (inducible) defense (Howe and 

Jander, 2008). Induced defense responses are very common compared to special cases of 

constitutive defense (Karban and Myers, 1989; Karban et al., 1997). For plants, it is 

important to minimize the cost of defenses because they have limited resources; in case of 

constitutive defense, (1) plants have to always allocate a certain amount of their resources 

to defense and consequently these resources are never available for growth and 

reproduction, and (2) plants have to produce many kinds of defensive metabolites to cope 

with unpredictable environment. In the case of induced defense responses, plants only need 

to allocate resources to defense when herbivore attack occurs. Although inducible defense 

mechanisms save on costs compared to constitutive defenses, induced defenses have one 

substantial disadvantage, which is the time lag between the first attack and the actual 

activation of the defense. In other words, plants have to cope with herbivores for hours or 

even days until defenses can be activated.  

This has long been a matter of intense discussion: why are induced defenses found 

so commonly in the more than 110 studied plant-herbivore interactions? Some 

experimental evidence suggests that some metabolites toxic to herbivores can be also toxic 

to plants. To avoid this negative effect, plants constitutively express the inactive form of 

toxic compounds, and quickly activate them only after herbivore attack. Also, plants are in 

unpredictable environments; constitutive defense has no lag time, but is inflexible, whereas 

induced defenses allow plants to respond to different types of damage, in different locations 

within an individual plant. In addition, previous studies showed that plants can remember 

certain herbivory patterns and develop priming and/or vaccination strategies to quickly 

respond to herbivores (Baldwin, 1998; Agrawal, 1999; Kessler and Baldwin, 2002; 

Cipollini et al., 2003; Kessler and T. Baldwin, 2004; Voelckel and Baldwin, 2004; Zavala 

et al., 2004a; Frost et al., 2008; Steppuhn and Baldwin, 2008; Mithöfer and Boland, 2012). 

Interestingly, Karban and Baldwin (Karban and Baldwin, 1997) suggested that plants may 

have originally evolved only induced defense systems to respond to unpredictable 
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environmental variability, and constitutive defenses may have come later under particular 

conditions in some plants.  

  

Jasmonic acid: important phytohormone for plant growth, development and defense 

Jasmonic acid (JA) is an oxylipin (oxygenated fatty acid) synthesized from 

membrane-derived fatty acids (16:3 or 18:3) via the well-characterized octadecanoid 

pathway in chloroplasts and peroxisomes (reviewed in (Schaller and Stintzi, 2009)). JA can 

be metabolized to several other derivatives – collectively referred to as jasmonates – such 

as methylated JA (MeJA; methyl jasmonic acid) by methyltransferases or it can be 

conjugated to amino acids (JA-Ile, JA-Leu, JA-Val, etc.) by jasmonate resistant (JAR) 

enzymes. Jasmonate biosynthetic and metabolic pathways are highly conserved in mosses, 

fungi, gymnosperms and angiosperms. 

Jasmonates are important plant hormones known to regulate plant growth, 

development and defense against abiotic and biotic stress. Processes influenced by 

jasmonate signaling include root growth (Staswick et al., 1992), trichome initiation (Li et 

al., 2004; Qi et al., 2011), fruit ripening (Pérez et al., 1997; Fan et al., 1998), anthocyanin 

accumulation (Shan et al., 2009), senescence (Parthier, 1990; He et al., 2002; Shan et al., 

2011), pollen and flower development (McConn and Browse, 1996; Stintzi and Browse, 

2000; Li et al., 2004; Mandaokar et al., 2006), and defense in response to wounding 

(Glauser et al., 2008), herbivore attack (Halitschke and Baldwin, 2003; Glazebrook, 2005; 

Zavala and Baldwin, 2006; Browse and Howe, 2008) and pathogen infection (Vijayan et 

al., 1998). These data suggest that jasmonates are the crucial natural integrators of plant 

defense and development (reviewed in (Wasternack, 2007; Balbi and Devoto, 2008; Howe 

and Jander, 2008)). To date, jasmonate-synthesis- or perception-deficient plants have been 

used to conduct many advanced functional studies of jasmonates, revealing their ubiquitous 

function in plants’ defense and development. 

 

Negative regulators of Jasmonate signaling, Jasmonate ZIM domain proteins, and their 

interaction partners 

Jasmonate ZIM domain (JAZ) proteins belong to the previously characterized 

family of ZIM (Zinc-finger protein expressed in Inflorescence Meristem) proteins. They 

were identified as key regulators of jasmonate signaling that are ubiquitously found in 
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many plants species including Arabidopsis, rice, tomato, and tobacco plants (Chini et al., 

2007; Thines et al., 2007; Shoji et al., 2008; Ye et al., 2009; Seo et al., 2011; Sun et al., 

2011; Ismail et al., 2012; Oh et al., 2012). JAZ proteins are characterized by two highly 

conserved motifs, TIF[F/Y]XG (or its variant) (Shikata et al., 2004; Vanholme et al., 2007) 

and Jas (S-L-X(2)-F-X(2)-K-R-X(2)-R) (Yan et al., 2007; Melotto et al., 2008), required 

for the regulation of jasmonate-responsive genes. These conserved motifs are essential for 

functional jasmonate signaling: the TIFY motif is typically located in the N-terminal part of 

the protein and is involved in homo- and heteromeric interactions among JAZ proteins 

(Chini et al., 2009; Chung and Howe, 2009) as well as it interactions with the JAZ/co-

repressor NINJA-TPL complex (Pauwels et al., 2010). The Jas motif is typically located in 

the C-terminus of JAZ proteins and is required for binding of several core- (SCFCOI1 

complex, MYC2/3/4) and co-regulatory proteins (EIN3/EIL1, MYB21/24, TT8/GL3/EGL3 

and DELLA) that induce or control downstream processes in jasmonate signaling 

(reviewed in (Browse and Wager, 2012)). The Jas motif has also been shown to contribute 

to the stability of JAZ proteins via a yet-unknown mechanism (Yan et al., 2007; Chung et 

al., 2009).  

 

JAZ-mediated jasmonate signalling 

Since the discovery of core components in jasmonate signalling: the CORNATINE 

INSENSITIVE1 (COI1) protein, an F-box protein acting as a receptor of jasmonates (Feys 

et al., 1994; Xie, 1998; Devoto et al., 2005; Katsir et al., 2008; Paschold et al., 2008; Yan et 

al., 2009; VanDoorn et al., 2011; Ye et al., 2012), Jasmonate ZIM domain (JAZ) proteins 

identified as negative regulators of jasmonate signaling (Chini et al., 2007; Thines et al., 

2007; Shoji et al., 2008; Ye et al., 2009; Seo et al., 2011; Sun et al., 2011; Ismail et al., 

2012; Oh et al., 2012) and the bioactive jasmonate (+)-7-iso-JA-L-Ile (JA-Ile) (Fonseca et 

al., 2009; Suza et al., 2010; Koo et al., 2011), knowledge of jasmonate-mediated plant 

responses is dramatically expanding. In the presence of the active hormone JA-Ile, JAZ 

proteins are degraded by the action of the SCFCOI1-E3 ubiquitin ligase complex and 26S 

proteasome, releasing jasmonate-induced transcription factors (e.g. MYC2/3/4) from 

repression, and triggering expression of jasmonate-dependent genes (reviewed in (Kazan 

and Manners, 2008)). While upstream jasmonate signaling pathways (JA-Ile-SCFCOI1 

complex-JAZ interactions) apparently share many common features and retain a high 
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degree of conservation in higher plants, downstream jasmonate signaling is significantly 

more variable, with various kinds of interacting partners involved. Recently, significant 

progress has been made in the identification of co-regulators of the core complex (JA-Ile- 

SCFCOI1 complex-JAZ), target transcription factors, and proteins downstream of jasmonate 

signaling in plants.  

 

Co-regulators of JAZ proteins to repress downstream transcriptional events 

JAZ proteins are generally known to act as transcriptional repressors; however, it is 

still unclear how JAZ proteins repress transcription of target transcription factors at the 

molecular level. Recent studies have uncovered interacting proteins and small molecules: 

(1) InsP5 (inositol pentakisphosphate) was found via mutant screening to act as a co-

receptor of COI1-JAZ by interacting with amino acid residues of COI1. The Arabidopsis 

ipk1-1 mutant, which has more InsP5, showed elevated expression of the wound- and 

jasmonate-induced genes AtWRKY70 and AtAOS, stronger root growth inhibition and 

reduced performance of caterpillars compared to WT plants (Stevenson-Paulik et al., 2005; 

Sheard et al., 2010; Mosblech et al., 2011).  

(2) JAZ proteins recruit a co-repressor, the TPL(TOPLESS)-NINJA(Novel 

Interactor of JAZ) complex, which contains the EAR (ERF-Associated Amphiphilic 

Repression) motif (LxLxLx or DLNxxP) well known to function in gene repression 

(Kazan, 2006; Szemenyei et al., 2008). These proteins therefore play a crucial role in 

repression of multiple jasmonate responsive genes and pathways in Arabidopsis (Pauwels 

et al., 2010). Interestingly, a subgroup of JAZ proteins (AtJAZ5, AtJAZ6, AtJAZ7 and 

especially, AtJAZ8) contains highly conserved EAR (LELRL) or EAR-like (DLNEPT) 

motifs, allowing the recruitment of TPL protein without NINJA assistance to repressed 

jasmonate signaling such as root growth through MYC2 in Arabidopsis (Shyu et al., 2012).  

(3) DELLA proteins are important repressors of gibberellic acid (GA) signaling that 

promote growth and repress defense-related gene transcript accumulation, proposed to be 

essential for fully elicited jasmonate-mediated responses (Hou et al., 2010; Wild et al., 

2012). DELLA proteins can directly interact with C-terminus of JAZ1 and JAZ8 proteins in 

Arabidopsis and they repressed interaction of JAZ and MYC2, which led to increased 

ability of MYC2 to activate defense-related gene expression and inhibit root growth. 
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Notably, DELLA proteins play an antagonistic role to the NINJA-TPL complex in JAZ-

mediated jasmonate signaling. 

 

Transcription factor targets of JAZ repressors 

The bHLH transcription factor (TF) MYC2 was the first identified repression target 

of JAZ proteins in Arabidopsis. MYC2 is known to regulate the majority of jasmonate-

responsive genes after wounding and herbivore attack, as well as jasmonate-mediated root 

growth inhibition (Boter et al., 2004; Lorenzo et al., 2004; Chung et al., 2009). MYC2-like 

genes have been identified in many other plant species: MYC2 regulates nicotine 

biosynthesis in Nicotiana spp. (Todd et al., 2010; Shoji and Hashimoto, 2011) and 

tolerance to drought stress in rice (Seo et al., 2011). In addition, bHLH-type TFs in 

Arabidopsis (AtMYC3 and AtMYC4) and N. tabacum (NtMYC2a, NtMYC2b and 

NtMYC2c) were identified; these new genes showed both redundant and specific functions 

in the regulation of jasmonate-responsive genes (Fernandez-Calvo et al., 2011; Niu et al., 

2011; Zhang et al., 2012).  

Recently, the R2R3-MYB transcription factors MYB21 and MYB24, and the WD-

repeat/bHLH (GL3, EGL3, TT8)/MYB75 complex were identified as targets of JAZ 

proteins in Arabidopsis: MYB21, MYB24, and the WD-repeat/bHLH (GL3, EGL3, 

TT8)/MYB75 complex directly interact with the C-termini of JAZ proteins; MYB21 and 

MYB24 regulate male fertility in flowers by controlling pollen maturation, anther 

dehiscence, and filament elongation, and the WD-repeat/bHLH (GL3, EGL3, TT8)/MYB75 

complex  controls jasmonate-regulated anthocyanin accumulation and trichome initiation 

(Qi et al., 2011; Song et al., 2011).  

Ethylene (ET) and jasmonates are also known to synergistically regulate plant 

development and defense responses (Robert-Seilaniantz et al., 2011). Recently, Zhu et al. 

(2011) demonstrated that AtJAZ directly interacts with EIN3/ EIL1 transcription factors, 

which are positive regulators of jasmonate/ET-responsive defense-related genes and 

jasmonate-induced root hair development, but not fertility or pigment metabolism (Zhu et 

al., 2011). They showed that AtJAZ directly interacts with EIN3/EIL1 transcription factors 

and represses their transcriptional activity together with the co-repressor HDR6 that 

modulates de-acetylation of histones.  
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Diversity and specificity of JAZ proteins in N. attenuata plants 

In chapter 3, I identified 12 novel JAZ protein family members in the native 

tobacco Nicotiana attenuata, and conducted a functional study of NaJAZh protein in plant 

defense against herbivores and plant development, both in the glasshouse and in the native 

habitat of N. attenuata (Great Basin Desert, Utah, USA). We demonstrate that silencing 

NaJAZh deregulates a subset of inducible direct defense compounds: trypsin proteinase 

inhibitors (TPIs) and 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs), and 

indirect defense compounds, volatile organic compounds (VOCs) such as GLVs and 

volatile terpenes. In contrast, silencing of NaJAZh suppressed the accumulation of nicotine 

in irJAZh transgenic plants. This shows an unexpected but very interesting crosstalk in JAZ 

regulation in tobacco plants. We suggest that control of nicotine biosynthesis may be 

separate from the other inducible defense metabolites in tobacco.  In addition, we found 

that NaJAZh-silenced plants develop necrosis on their leaves which shows several 

hallmarks of programmed cell death. My work demonstrates the first clear example of 

jasmonate-regulated defense functions mediated by one particular JAZ gene. 

In chapter 5, I described the function of NaJAZd in defense and flower 

development in Nicotiana attenuata plants. In contrast to NaJAZh, NaJAZd has only minor 

role(s) in plant defense against herbivores. We suggest that NaJAZd is a weak negative 

regulator (or redundant regulator) of nicotine biosynthesis or transport in N. attenuata 

plants. In contrast to defense responses, NaJAZd silencing strongly affected the lifetime 

production of seed capsules, which was associated with enhanced flower abscission in late 

flower developmental stages. This is likely due to the impact of NaJAZd on JA and JA-Ile 

as well as the transcript abundance of the master flower regulator MYB305 in N. attenuata 

flowers. Our data suggest that NaJAZd counteracts flower abscission by regulating 

hormone levels and/or expression of the NaMYB305 gene in N. attenuata, thus regulating 

seed production. 

 

Roles of R2R3-MYB transcription factors in plant  

The MYB protein family is one of the largest and most highly diverse gene families 

represented in all eukaryotes, and most MYB proteins function as transcription factors. 

MYB proteins are divided into different classes depending on the number of tandem repeats 

of 50 amino acids (R1, R2 and R3), and generally three and two repeats are found in 
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animals and plants (R2R3-MYB class), respectively (Rosinski and Atchley, 1998; Stracke 

et al., 2001). In the last decade, numerous functional studies of R2R3-MYB proteins in 

many plant species have been conducted, demonstrating their roles in various plant-specific 

processes: (1) metabolism: primary and secondary metabolites such as flavonoid 

(anthocyanin, tannin, phenylpropanoid, etc.) accumulation, cell wall construction (lignin 

biosynthesis, lignin, cellulose, and xylan deposition), and biosynthesis of glucosinolates; 

(2) morphogenesis: determination of cell fate and identity such as trichome and root hair 

initiation, extension, and patterning, control of petal shape, and cell differentiation; (3) 

development: developmental processes such as anther and pollen development, axillary 

meristem formation, side shoot formation, and lateral organ separation; and (4) stress: 

response to abiotic and biotic stresses such as hypersensitive cell death program against 

pathogen attack, systemic resistance against fungi and bacteria, regulation of stomata 

movements in response to drought stress and disease resistance, cold tolerance, and 

phosphate starvation (reviewed in (Dubos et al., 2010)). 

Recently, the R2R3-type MYB305 transcription factor (homologue of AtMYB21/24 

and PhEOBII) was identified and shown to function as a major flower regulator in petunia 

and tobacco plants. It controls phenylpropanoid volatile production in flowers, flower 

anthesis (opening), floral nectar production, and nectary maturation (Liu et al., 2009; 

Spitzer-Rimon et al., 2010; Colquhoun et al., 2011; Liu and Thornburg, 2012) 

In chapter 4, we described the function of EOBII and MYB305 in petunia and N. 

attenuata, respectively. EOBII (MYB305)-silenced petunia and N. attenuata flowers failed 

to enter anthesis and showed premature senescence of closed buds, resulting in extreme 

difficulty for these silenced plants in sexual propagation. In this study, we proposed that 

PhEOBII (NaMYB305) has a dynamic function in flowers, especially in flower anthesis 

(opening) in both petunia and N. attenuata. We suggest that the function of PhEOBII 

(NaMYB305) is highly conserved in angiosperms.  

 

Nicotiana attenuata as a model plant 

Nicotiana attenuata (N. attenuata; Solanaceae) is a wild tobacco species found as a 

summer annual native plant to Southwestern North America (Figure 1A). N. attenuata 

seeds germinate in nitrogen-rich soils after being exposed to smoke-related cue(s) in post-

fire environments (Baldwin and Morse, 1994; Preston and Baldwin, 1999). As mentioned 
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above, maximal fitness is general goal for all plants. However, the synchronized post-fire 

germination behavior of N. attenuata creates intense intraspecific competition within 

populations, and these plants tend to allocate many of their resources to rapid growth and 

increased lifetime seed production. However, as a pioneer plant in a post-fire environment, 

N. attenuata is also exposed to unpredictable herbivore communities (Figure 1B-1F), for 

example the piercing-sucking herbivores Tupiocoris notatus (mirid) and Empoasca spp. 

(leafhopper), the chewing herbivores Epitrix spp. (flea beetles), Spodoptera spp. 

(armyworm) and larvae of the specialists Manduca sexta (tobacco hornworm) and 

Manduca quinquemaculata (tomato hornworm). Because N. attenuata is native to the Great 

Basin Desert of the southwestern USA, plants also experience high UV irradiance, high and 

variable  , N. attenuata plants have to balance and strictly allocate their resources to growth, 

reproduction, and defense to adapt and survive in complex environments, leading to 

development of sophisticated strategies (Baldwin, 1998; Baldwin, 2001). 

In summary, N. attenuata plants have synchronized post-fire germination behavior 

which produces low interspecific and high intraspecific competition, complex defense 

systems to make them highly successful in stressful environments, an unpredictable 

herbivore community, short generation time, and are self-compatible but opportunistic 

outcrossers. It is relatively easy to manipulate gene expression in N. attenuata via stable 

transformation and virus-induced gene silencing (VIGS). All these properties make N. 

attenuata an excellent a model plants for ecological and molecular studies of plant defense 

responses against herbivores in nature. 

 

 

 

 

 

 

 

 

 
 
 
 



General Introduction 

11 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 1.  The ecological model plant Nicotiana attenuata and its native herbivores in the 

Great Basin Desert, Utah, USA. (A) N. attenuata is a wild annual tobacco species native to 

Southwestern North America. (B) - (F) native herbivores of N. attenuata: the piercing-

sucking herbivores Tupiocoris notatus (mirid, B) and Empoasca sp. (leafhopper, C) and the 

chewing herbivores Epitrix hirtipennis (flea beetle, D), Spodoptera sp. (armyworm, E), and 

Manduca quinquemaculata (tomato hornworm, F; the tobacco hornworm M. sexta is also a 

native herbivore). 
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Manuscript I 
 

NaJAZh regulates a subset of defense responses against herbivores and spontaneous 

leaf necrosis in Nicotiana attenuata plants 

 

Youngjoo Oh, Ian T. Baldwin, Ivan Galis 

Published in Plant Physiology 2012, 159(2):769-788 

 
 
 

In manuscript I, I identified 12 novel putative Jasmonate ZIM domain (JAZ) 

proteins in the native tobacco, Nicotiana attenuata. Here I show that NaJAZ genes display 

temporal and spatial differences in their expression after simulated herbivory. Among these 

genes, I further characterized NaJAZh, which was highly induced after simulated herbivory 

using reverse genetic approaches. I show that NaJAZh negatively regulates a subset of 

direct (HGL-DTGs and TPIs) and indirect (volatiles) defense responses and also suppresses 

ROS (reactive oxygen species) accumulation in N. attenuata.  This is the first experimental 

evidence that a single JAZ protein can regulate a specific part of jasmonate signaling in 

plants. 

 
 
 

Youngjoo Oh designed and performed the experiments, analyzed the data and wrote the 

manuscript. Ian T. Baldwin designed the experiments, helped perform field experiments, 

and wrote the manuscript. Ivan Galis designed and coordinated the experiments and wrote 

the manuscript. 
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Manuscript II 
 

EOBII controls flower opening by functioning as a general transcriptomic switch 

 

 

Thomas A. Colquhoun, Michael L. Schwieterman, Ashlyn E. Wedde, Bernardus C.J. 

Schimmel,Danielle M. Marciniak, Julian C. Verdonk, Joo Young Kim, Youngjoo Oh, Ivan 

Galis, Ian T.Baldwin and David G. Clark 

Published in Plant Physiology 2011, 156(2):974-984 

 

 

 

In manuscript II, we characterized EOBII (a homologue of NaMYB305) and 

demonstrated that it controls a highly dynamic process fundamental to sexual reproduction 

in petunia, P. x hybrida ‘Mitchell Diploid’ (MD), and Nicotiana attenuata plants. Both 

petunia and N. attenuata plants strongly silenced in the expression of EOBII or MYB305, 

respectively, displayed non-opening and prematurely abscised flower phenotypes, which 

were partially recovered when PhEOBII- or NaMYB305-deficienct plants were made 

ethylene-insensitive through crossing with ethylene-insensitive transgenic line or when 

treated with an ethylene inhibitor, 1-MCP. This manuscript shows the functional 

conservation of PhEOBII (NaMYB305) in an angiosperm system. Although I only partially 

contributed to this manuscript, it allowed deeper interpretation and crucial progress in the 

understanding the function of the NaJAZd protein described in the next chapter, and was 

therefore included as part of my thesis dissertation. 

 

 

This manuscript included two groups of collaborators: (1) researchers working with 

petunia in the University of Florida, Gainesville, U.S.A., and (2) researchers using N. 

attenuata in the Max Planck Institute for Chemical Ecology in Jena, Germany.  
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Thomas A. Colquhoun, Michael L. Schwieterman, Ashlyn E. Wedde, Bernardus 

C.J. Schimmel, Danielle M. Marciniak, Julian C. Verdonk and Joo Young Kim contributed 

to the research on EOBII in petunia. They designed, performed the experiments and wrote 

the part of the manuscript regarding the work on petunia. Youngjoo Oh, Ivan Galis, and Ian 

T. Baldwin contributed to the study of NaMYB305 (a homologue of PhEOBII) in N. 

attenuata. Youngjoo Oh designed and performed the experiments, analyzed data, and wrote 

the manuscript. Ivan Galis designed and coordinated the experiments and wrote the 

manuscript. Ian T. Baldwin designed the experiments and wrote the manuscript.  
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Manuscript III  
Jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and 

counteracts flower abscission in Nicotiana attenuata plants 
 
 

Youngjoo Oh, Ian T. Baldwin, Ivan Galis 

Submitted to PLoS One (22-Oct-2012) 

 
 
 

In manuscript III, I characterized the functions of NaJAZd protein in both plant 

development and defense responses against herbivore attack. NaJAZd plays minor roles in 

plant defense responses and may possibly be involved in nicotine biosynthesis or transport 

together with an unknown co-regulator or redundant JAZ proteins. Apart from its function 

in defense responses, NaJAZd has an important role in the control of flower abscission in 

later stages of flower development, which eventually affects the lifetime seed capsule 

production in N. attenuata; this is most likely due to the regulation of the phytohormones 

jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels, and/or expression of 

NaMYB305 gene in N. attenuata flowers. I provide a novel insight into the function of JAZ 

regulators in flower and seed development. This finding supports the widely discussed 

hypothesis of functional specialization of JAZ proteins in both defense and development in 

plants. 
 
 
 
Youngjoo Oh designed and performed the experiments, analyzed the data and wrote the 

manuscript. Ian T. Baldwin designed the research and wrote the manuscript. Ivan Galis 

designed and coordinated the research and wrote the manuscript.
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A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and 

counteracts flower abscission in Nicotiana attenuata plants  
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Abstract 

Jasmonic acid (JA) is an important regulator of plant growth, development and 

defense. The Jasmonate-ZIM domain (JAZ) proteins are key regulators in JA signaling 

ubiquitously present in flowering plants but their functional annotation remains largely 

incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana 

attenuata (N. attenuata), and initiated systematic functional characterization of these 

proteins by reverse genetic approaches. In this report, N. attenuata plants silenced in the 

expression of NaJAZd (irJAZd) by RNAi-mediated gene silencing were used to 

characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently 

up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe 

strong defense-related phenotypes, such as altered herbivore performance or the 

constitutive accumulation of defense-related secondary metabolites in irJAZd plants 

compared to WT plants, both in the glasshouse and the native habitat of N. attenuata in the 

Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules 

than did WT plants as a result of increased flower abscission in later stages of flower 

development. The early- and mid-developmental stages of irJAZd flowers had reduced 

levels of JA and JA-Ile, while fully open flowers had normal levels, but these were 

impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants 

were shown to have strong flower abscission phenotypes and contained lower NEC1 

transcript levels, phenotypes which are copied in irJAZd plants. We show that the NaJAZd 

protein is required to counteract flower abscission, possibly by regulating JA, JA-Ile levels 

and/or expression of NaMYB305 gene in N. attenuata flowers. This novel insight into the 
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function of JAZ proteins in flower and seed development highlights the diversity of 

functions played by JA and JAZ proteins.  

 

Introduction 

Plants are frequently exposed to various abiotic and biotic stresses such as high 

light, water deficit, salinity stress, variable temperature, lack of nutrients, and attack from 

pathogens and herbivores. Survival of plants in nature thus strongly depends on a balance 

between growth and defense related processes, which is regulated by a complex 

phytohormonal network [1-6]. In this network, jasmonic acid (JA) controls both growth and 

defense responses in plants (reviewed in [7]). JA is synthesized from membrane-derived 

fatty acids (18:3) via the octadecanoid pathway [8] and is known to activate transcription 

factors (TFs) that trigger a large-scale transcription reprogramming of growth and 

development, such as root growth and adventitious root formation, trichome initiation, fruit 

ripening, anthocyanin accumulation, senescence, pollen and flower development, tuber 

formation and tendril coiling, and defense against wounding, herbivore attack and pathogen 

infection [9-13].  

Recently, the mode of action and role of several core components in JA signaling, 

COI1 (CORNATINE INSENSITIVE1), JAZ (Jasmonate ZIM-domain), and (+)-7-iso-JA-

L-Ile (JA-Ile) were identified [14-18]. In the presence of the active hormone, JA-Ile, JAZ 

proteins are degraded by the action of  SCFCOI1-E3 ubiquitin ligase complex associated 

with 26S proteasome that releases the positive regulators of JA signaling, MYC2/3/4 

transcription factors and triggers the expression of JA-dependent genes in Arabidopsis 

(reviewed in [19]). In addition, the function of several co-regulators of the core complex of 

JA signaling, such as NINJA (Novel Interactor of JAZ) and TPL (TOPLESS) proteins, 

InsP5 (inositol pentakisphosphate), EIN3/EIL1 (ethylene-stabilized transcription factors), 

R2R3-MYB transcription factors MYB21 and MYB24, WD-repeat/bHLH (GL3, EGL3, 

TT8)/MYB75 complexes and DELLA proteins were elucidated [20-25].  

JAZ proteins that are generally classified as negative regulators of JA signaling 

contain two functionally conserved domains, ZIM with TIF[F/Y]XG motif (or its variant) 

and Jas with S-L-X(2)-F-X(2)-K-R-X(2)-R motifs, both of which are essential for JA signal 

transduction [26-29]. ZIM domains mediate the homo- and heteromeric interactions among 

the JAZ proteins as well as their interaction with the co-repressor NINJA-TPL complex; the 
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Jas domain is required for binding several core- (COI1, MYC2/3/4) and co- (EIN3/EIL1, 

MYB21/24, TT8/GL3/EGL3 and DELLA) regulatory proteins that transduce downstream 

signaling (reviewed in [19]). It was proposed that different combinations and interactions 

between JAZ proteins and co-regulators can control specific subset of JA-mediated 

response in plants [30,31] however, specific examples of such interactions remain rare. 

Nevertheless, emerging JAZ interactome and the discovery of JAZ proteins in many plant 

species are continuously expanding our knowledge of jasmonate signaling (reviewed in 

[19]). Functional studies with genetically modified plants have provided evidence of the 

direct involvement of JA and JAZ proteins in developmental processes such as secondary 

growth (interfascicular cambium initiation) [32], phytochrome A-mediated shade responses 

[33], anthocyanin accumulation and trichome initiation [24], stamen development [23], 

flower induction [34], and defense responses against biotic [31,35-37] and abiotic [38-41] 

stresses. However, additional experiments are required to better understand the complex 

networking among JA, JAZ, and downstream responses in plants. 

Previously, we cloned 12 novel JAZ genes from the native tobacco plant N. 

attenuata and reported unique roles for NaJAZh in defense and development [31]. Here, we 

examine the function of NaJAZd, both in development and defense against herbivores. The 

NaJAZd-silenced plants had normal levels of defense-related phytohormones and only 

slightly altered defense metabolic profiles in the leaves. In development, irJAZd plants had 

significantly impaired seed production which is one of the most important fitness 

parameters in N. attenuata plants. We show that NaJAZd is involved in the regulation of 

flower abscission which in turn is associated with reduced jasmonate levels and impaired 

expression of genes (NaMYB305, NaNEC1) known to be important for flower 

development. 

 

Results  

NaJAZd transcript accumulation is strongly induced by wounding and herbivory 

Previously, we reported 12 JAZ genes in N. attenuata [31], including the NaJAZd 

gene characterized in this study. First, we examined NaJAZd expression in the rosette 

leaves of N. attenuata plants after wound and water treatment (puncturing leaves with a 

fabric pattern wheel and supplying with 20 µL of water; W+W), simulated herbivore attack 

(wounds treated with 20 µL of 1:10 diluted oral secretions isolated from specialist 
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herbivore Manduca sexta (M. sexta) larvae; W+OS), and in untreated leaves by quantitative 

real-time PCR (qPCR). While both treatments strongly increased NaJAZd transcript 

accumulations compared to the levels in untreated leaves, W+OS-treatment dramatically 

amplified these increases (Figure 1A). The gene transcripts rapidly returned to basal levels 

within 3 h after treatment. To further explore the function of NaJAZd, we generated the 

inverted-repeat (ir) RNAi-mediated NaJAZd-silenced plants (irJAZd; Figure S1A and S1B) 

and selected the three best silenced lines (irJAZd-4, -8, and -10; Figure 1B) for functional 

analysis. A single copy T-DNA insertion status of each line was confirmed by Southern 

blot analysis (Figure S1C). 

While measuring the silencing efficiency of NaJAZd by RNAi, we also examined 

the expression of other NaJAZ genes (NaJAZa, c, e, f, h, i, j, k, l, and m) in irJAZd plants to 

identify possible cross-silencing effects and/or crosstalk among JAZ genes. In contrast to 

our previous study with NaJAZh-silenced plants [31], we did not find any strong evidence 

of NaJAZd-mediated changes in expression of other JAZ genes in N. attenuata except for a 

slight but significant down-regulation of NaJAZh transcript accumulation in response to 

W+OS-elicitation (Figure S2). This suggests that NaJAZd may be required for a full up-

regulation of NaJAZh expression after herbivore attack. 

 

NaJAZd-silencing weakly affects JA-dependent defenses  

To determine the role of NaJAZd in defense, we carried out performance assays 

with the specialist herbivore, M. sexta, with rosette stage WT and irJAZd plants. We placed 

a freshly hatched M. sexta neonate on the leaves of each 20 replicates of WT and irJAZd-4 

and -8 plants and determined the mass of caterpillars after 4, 6, 8, 10, and 12 d of feeding 

on the plants (Figure 2A). NaJAZd-silencing did not affect the performance of M. sexta 

caterpillars as on both irJAZd genotypes and WT plants the larvae had similar growth rates.  

To further test the hypothesis that NaJAZd is not a major player in defense against 

herbivores, we examined the levels of herbivore-induced phytohormones, JA-Ile (Figure 

2B), jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA; Figure S3) in rosette 

stage WT and irJAZd-4, -8, and -10 plants at 0, 1, and 2 h after W+OS treatment. The 

levels of JA-Ile (Figure 2B), and of other phytohormones (JA, SA and ABA; Figure S3) in 

irJAZd transgenic plants were similar to those in WT at all examined time points, 

confirming that NaJAZd-silencing alone does not significantly alter the leaf levels of 
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defense-related phytohormones, even though the transcript levels of NaJAZd were strongly 

elicited by wounding and herbivory in the leaves (Figure 1A). 

To gain additional insight in potential targets of NaJAZd, we analyzed several 

defense-related secondary metabolites after W+OS treatment. Nicotine is a well-known 

defense-related secondary metabolite in Nicotiana species [42,43]. In contrast to the 

unaltered phytohormone levels, irJAZd leaves contained significantly more nicotine at 48 

and 72 h after W+OS (Figure 2C), suggesting that NaJAZd may negatively contribute to 

biosynthesis of nicotine and/or suppress its transport from the roots. The accumulation of 

17-hydroxygeranyllinalool-diterpene glycosides (HGL-DTGs) [44,45] and trypsin protease 

inhibitors (TPIs) activity [46-48] in W+OS-treated irJAZd-4, -8, and -10 plants were not 

different from WT levels (Figure S4). Apparently, higher amounts of nicotine in irJAZd 

compared to WT plants alone were not sufficient to alter the performance of a specialist 

herbivore (Figure 2A). 

 

NaJAZd-silencing does not alter the preferences of native herbivores in nature 

In natural environments, plants are exposed to substantially more stresses compared 

to their relatively safe containment in the glasshouse. We therefore examined if NaJAZd-

silenced plants could perform differently in high stress conditions characterized by high UV 

irradiance, high and variable temperatures, low humidity and communities of voracious 

native herbivores. In the 2010 field seasons, we planted empty vector-transformed (EV) and 

irJAZd plants in a pairwise design in the native habitat of N. attenuata (Great Basin Desert, 

Utah, USA) and compared herbivore damage to these plants (Figure 3). Field-grown 

irJAZd plants showed similar levels of damage from native herbivores, mirids (Tupiocoris 

notatus), flea beetles (Epitrix spp.), and noctuidae larvae (Spodoptera spp.) compared to 

WT plants, providing additional evidence that NaJAZd has only a minor role in defense 

against biotic and abiotic stresses. This prompted our intensive search for alternative 

functions of this protein. 

 

NaJAZd-deficiency causes increased flower abscission  

NaJAZd-silencing only slightly affected defense responses. Considering the 

extensively described role of JA in growth and development (reviewed in [9]), we decided 

to carefully examine the growth and development of irJAZd plants. The irJAZd plants 
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showed no obvious vegetative growth deficiencies: they had similar size of rosettes, leaf 

shape, and stalk length (data not shown). However, in contrast to vegetative growth, their 

reproductive fitness was significantly compromised. During the harvesting of seeds, we 

noticed that irJAZd plants produced significantly less seed mass compared to WT plants. 

When we carefully counted the number of mature seed capsules during entire reproduction 

of WT and irJAZd-4 and -8 plants, both irJAZd lines had about 20% fewer capsules 

compared to WT (Figure 4).  

We hypothesized that NaJAZd was involved in flower initiation, which would 

ultimately affect the lifetime seed capsule production in irJAZd plants. However, the 

numbers of flower buds in irJAZd plants seemed comparable in WT and irJAZd plants and 

flower parameters such as degree of flower opening, pollen maturation or length of pistils 

were not visibly altered in irJAZd plants. In addition, we examined if self-pollination 

ability was impaired in irJAZd flowers by hand pollination experiments using ripe pollen 

from the same flowers by spreading pollen on stigma with fine brush (Figure S5). The hand 

pollination, assuring that each stigma received sufficient amount of pollen in a timely 

coordinated fashion, failed to recover the formation of seed capsules in irJAZd to WT 

levels. These results suggested that irJAZd flowers have normal anthesis but another 

problem in flower development. We therefore conducted another more detailed experiment 

in which we quantified flower production distinguishing 4 categories: buds, elongated 

flowers, fully opened flowers and abscised flowers, which were counted every 3 d starting 

42 d after germination when the first buds and a few elongated flowers but no open flowers 

were present on the plants (Figure 5). To prevent mixing of abscised flowers from different 

plants, we placed each single plant in individual 30 x 52 cm plastic tray which captured all 

abscised flowers. While irJAZd plants had similar or even higher number of buds and 

elongated flowers, they produced significantly fewer open flowers on 48, 51, and 63 d-old 

plants and correspondingly higher numbers of abscised flowers at these and additional time 

points. Notably, the abscised flowers were all fully open flowers; abscission of younger 

stages or flower buds was not occurring. These data suggested that the function of NaJAZd 

is to prevent flower abscission in the later stages of flower development that directly affects 

lifetime production of seed capsules and fitness of N. attenuata. Whether this was mediated 

by direct function of NaJAZd in flowers was examined next.  
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Phytohormones and gene expression in N. attenuata flowers 

To elucidate the molecular mechanisms involved in NaJAZd-regulated flower 

abscission, we analyzed the levels of phytohormones and flower-related gene expression at 

four different developmental stages of flowers in WT and irJAZd plants: buds (F1), early 

elongated flowers (~ 10 mm length, F2), fully elongated flowers (still green and completely 

closed corollas, F3) and open flowers (completely opened white corollas, F4). First, we 

determined the expression of NaJAZd in WT and irJAZd flowers to examine if (1) NaJAZd 

is expressed in stage-specific manner, and (2) to evaluate the efficiency of gene silencing in 

irJAZd flowers by RNAi. In WT plants, the gene showed comparably high transcript levels 

during F1-F3 stages but its expression declined in the F4 stage. NaJAZd transcript level was 

strongly reduced in irJAZd flowers compared to WT levels (Figure 6A).  

Ethylene is known to be one of the important signals controlling flower abscission 

in plants (reviewed in [49]). The analysis of nearly 300 plant species showed that flower 

abscission in plants is highly sensitive to ethylene [50]. We therefore investigated the levels 

of ethylene and its possible role in enhanced flower abscission in irJAZd plants. Ethylene 

emissions increased in a stage dependent manner; however, we found no significant 

differences between WT and irJAZd flowers at all examined developmental stages (Figure 

6B). These data suggest that enhanced flower abscission in irJAZd plants is independent of 

ethylene concentrations in irJAZd flowers.  

Because JA is also known to regulate flower development in plants, we analyzed JA 

and JA-Ile levels using entire homogenized flowers. Interestingly, at three developmental 

stages (F1, F2, and F3) irJAZd flowers had significantly reduced levels of JA and JA-Ile 

compared to WT flowers (Figure 6B). It suggested that NaJAZd may be regulating flower 

abscission process via the regulation of JA and JA-Ile levels and/or JA-Ile-mediated 

signaling process. How a putative negative regulator NaJAZd contributes to the 

accumulation of JA remains to be elucidated.  

Finally, we examined the expression of several flower development-related genes. 

The R2R3-MYB transcription factors are known to regulate stamen maturation, flower 

opening and nectar production (reviewed in [51]). Recently, the function of MYB305 gene 

in controlling flower opening and floral nectar production in petunia, N. tabacum and N. 

attenuata was reported [52,53]. The N. attenuata plants strongly silenced in the expression 

of MYB305 showed premature flower abscission in early flower developmental stages 
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because their flowers failed to enter anthesis and eventually, these plants could not produce 

any seed capsules due to a lack of self-fertilization. Although irJAZd flowers did not show 

anthesis-related phenotypes as described in the previous section, premature flower 

abscission phenotype strongly resembled those of irMYB305 plants but the abscission was 

shifted to later stages in flower development. To examine a possible relationship between 

NaMYB305 and NaJAZd, we analyzed NaMYB305 expression at four different stages of 

WT and irJAZd flowers (Figure 6C).  In both WT and irJAZd flowers, NaMYB305 

expression gradually increased from F1 to F3, corroborating previous studies [52]. 

However, the irJAZd flowers contained significantly fewer NaMYB305 transcripts than did 

F4 stage WT flowers, suggesting that NaJAZd might be required for maintaining the 

appropriate levels of NaMYB305 in open stage flowers. Because fully silenced 

irNaMYB305 plants lost all their flowers, it is likely that moderate reductions in 

NaMYB305 levels observed in this study could be responsible for the abscission of a certain 

portion of flowers in irJAZd plants. 

To further examine the NaMYB305 deficiency, we analyzed the expression of 

NaNEC1 (nectarine 1) and NaCHAL (chalcone synthase) genes (Figure 6C) which are 

located downstream of MYB305 regulator in petunia and tobacco [52,54,55]. Consistent 

with NaMYB305 expression, NaNEC1 was similarly down-regulated in F4 stage flowers in 

irJAZd plants compared to WT flowers. However, NaCHAL expression was not 

significantly different between WT and irJAZd flowers (Figure 6C), showing an expression 

pattern which tracked flower ethylene emissions (Figure 6B).  

 

Global transcriptional changes associated with NaJAZd-silencing in N. attenuata 

leaves 

Because NaJAZd gene was strongly induced by W+OS treatment in the leaves, we 

conducted an additional microarray experiment focused on global leaf gene expression 2 h 

after W+OS-treatment. NaJAZd-silencing down-regulated a large numbers of genes (10321 

of 43504 microarray probes) but it up-regulated only a relatively small number (38) of 

genes. The list of more than 3 times up- and down-regulated genes in irJAZd plant 

compared to WT plants was annotated and categorized according to established GO 

categories (Table S1 and S2). Interestingly, several primary metabolic genes, such as sugar 
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transporter SWEET3 (4.93-fold), unknown glycosyltransferase (4.17-fold), fructokinase 

(3.76-fold), putative beta-1, 3-glucan synthase (3.76-fold) and 6-phosphofructokinase 4 

(3.7-fold) were strongly down-regulated in irJAZd leaves compared to WT leaves. These 

results suggest that, apart from direct changes in flowers caused by NaJAZd-silencing, the 

enhanced flower abscission phenotype in irJAZd plants could be due to a reduced nutrient 

availability in the flowers as leaves are providers of all essential nutrients required for 

successful flower development. Previous studies suggested that JA signaling may regulate 

sink-source relationship by regulating expression and accumulating vegetative storage 

proteins (VSPs) in soybean plants [56,57]. Further experiments are required to elucidate the 

emerging pleiotropic roles of NaJAZd in plant metabolism, development and defense. 

 

Discussion 

NaJAZd is a minor defense regulator in N. attenuata  

Previously, a dominant negative truncated forms of NtJAZ1and NtJAZ3 proteins 

from N. tabacum, a close homologues of N. attenuata NaJAZd and NaJAZa, respectively, 

repressed the MeJA-induced nicotine and related alkaloid accumulations in cultivated 

tobacco cells [35]. However, truncation of JAZ proteins affects the overall JAZ-mediated 

signaling so the plants become completely “deaf” to JA signaling. In other words, 

experiments with truncated JAZs can only tell us that certain metabolites, such as nicotine, 

are indeed JAZ-regulated but cannot pinpoint the causative JAZ protein(s) involved.  In 

contrast, targeted gene silencing is more useful but such analyses are frequently 

confounded by redundancy of gene function, and/or the lack of sophisticated, ecologically-

realistic phenotypic screens. Despite predicted and/or observed redundancy in the function 

of JAZ proteins [16,17,58], we reported that NaJAZh alone is able to suppressed the 

accumulation of two herbivore-induced defense metabolites, HGL-DTGs and TPIs in N. 

attenuata. In addition, silencing of NaJAZh by RNAi strongly reduced the performance of 

M. sexta larvae on these plants [31]. In these follow up experiments, we therefore used gene 

silencing to examine the function of NaJAZd.  

Overall, our data suggest that NaJAZd protein is another negative JAZ regulator 

involved in defense, particularly in nicotine accumulation. NaJAZd-silencing allowed 

higher accumulation of nicotine in simulated herbivory-treated plants at 48 and 72 h 

(Figure 2C). Regulation of nicotine levels by NaJAZd was specific to this alkaloid as other 
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defensive secondary metabolites such as HGL-DTGs or TPIs, previously shown to be 

controlled by NaJAZh [31], were not altered. However, the control of NaJAZd over 

nicotine levels was marginal as irJAZd plants did not contain constitutively increased 

nicotine levels as would be expected if NaJAZd was a master repressor of nicotine 

biosynthesis. Previously, silencing of NaJAZh, a master repressor of HGL-DTGs and TPIs 

caused significant increase in basal levels of these otherwise inducible metabolites in 

irJAZh plants [31]. Eventually, the changes in nicotine levels in NaJAZd-silenced plants 

were not sufficient to affect growth of a specialist herbivore M. sexta feeding on irJAZd 

plants in glasshouse (Figure 2A) and several natural herbivores of N. attenuata in native 

habitat of this plant (Figure 3). 

 Our initial data suggested that NaJAZd may not be a major player in defense. We 

therefore searched for alternative functions of this protein, finding an independent, fitness-

related role of NaJAZd. The expression of NaJAZd was required for WT-level retention of 

flowers in the N. attenuata inflorescences, a finding not unsurprising as JA is known to 

control various aspects of flower development. Furthermore, functional specialization of 

JAZ proteins in both defense and growth has already been proposed by other authors 

[10,30,31]. 

 

NaJAZd affects JA signaling in flowers and counteracts flower abscission  

The irJAZd plants were not different from WT in their vegetative growth; however, 

more irJAZd flowers abscised compared to WT, which significantly reduced the number of 

mature seed capsules (Figure 4 and 5). Ethylene is known to be a critical regulator of 

flower abscission (reviewed in [49]), but in follow up analyses, ethylene emissions were 

found not to be altered in irJAZd flowers compared to WT (Figure 6B). Plants blocked in 

ethylene perception (etr1 mutants) show a typical flower corolla retention phenotype and 

corollas remain attached to even ripe capsules [59-61], demonstrating that perception of the 

post-pollination ethylene burst triggers corolla abscission after successful pollination [61-

63]. However, in irJAZd plants, whole flowers are abscised after separation of pedicels 

from inflorescences, a distinctly different process from that of the ethylene-mediated 

corolla abscission.  

In contrast to ethylene, the patterns of JA and JA-Ile accumulation are altered in 

irJAZd flowers compared to WT (Figure 6B), which re-connects NaJAZd to its expected 
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function as an endogenous regulator of JA signaling, albeit in flowers. It has been widely 

reported that JA affects flower development [23,64,65], but JA function has been typically 

associated with male sterility. For example, defects in pollen maturation and pistil 

elongation disabled efficient self-pollination in COI1 mutant plants [14,66,67]). Here, our 

data provide a novel insight into JA function in flower development. This phenotype is 

likely a combined effect of reduced JA and JA-Ile levels and/or impaired JA signaling due 

to silencing of NaJAZd repressor in the flowers. At present, no other JA-deficient N. 

attenuata plants, including irAOC (strongly silenced in expression of allene oxide cyclase) 

and irCOI1 (silenced in expression of coronatine insensitive 1) plants have been reported to 

show similar flower abscission phenotype. Whether the effect of NaJAZd is on the enzymes 

that degrade JA or promotes JA biosynthesis in the flowers by suppressing a putative 

negative regulator of biosynthetic genes, remains to be determined. From our data and the 

expression of the key flower regulator NaMYB305, we propose that the function of 

NaJAZd is to maintain optimal levels of JA throughout flower development, which in turn, 

provides sufficient expression and function of MYB305 transcriptional regulator. 

Previously, plants silenced in expression of NaMYB305 gene were completely sterile due to 

a complete abscission of buds and early elongated flowers [52]. The silencing of 

NaMYB305 in N. attenuata was partially counteracted by inhibiting ethylene perception 

with 1-MCP treatments, and it is therefore possible that the lack of NaJAZd and 

dysfunction of MYB305 may be caused by an exaggerated sensitivity to otherwise normal 

levels of ethylene in irJAZd flowers.   

The homologues of NaMYB305 in petunia and N. tabacum regulate flower-specific 

flavonoid biosynthetic genes (phenylalanine ammonia-lyase; PAL, chalcone isomerase; 

CHI, and chalcone synthase; CHS) and two nectarines (nectarin1; NEC1, nectrain5; NEC5). 

Nectarines, in particular, are known to be involved in direct flower defense which may 

reconnect NaJAZd function back to defense. Previously, NEC1 has been shown to control 

the production of hydrogen peroxide (H2O2) in nectar together with NEC3 and NEC 5 

proteins and high levels of antimicrobial H2O2 (up to 4 mM) are thought to protect the 

gynoecium and developing ovules from invading microorganisms [55,68,69]. Recently, 

MYB305 has been also shown to mediate additional functions in the maturation of the 

tobacco nectary by controlling the expression of several starch metabolic genes [53].  
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Although we found altered JA levels and direct changes in flower gene expression, 

it should not be forgotten that NaJAZd is strongly regulated by herbivory stress in N. 

attenuata leaves. The regulatory role of NaJAZd over several primary metabolic genes in 

leaves during simulated herbivory, as revealed by microarray analysis of the leaves, offers 

an alternative mode of action for NaJAZd via control and/or redistribution of nutrients, 

which then might indirectly affect flower and capsule development in N. attenuata.  

 

Conclusions 

Increased flower abscission in NaJAZd-silenced plants points to a novel function of 

JAZ proteins in plants. The absence of NaJAZd negatively affected the fitness of plants as 

the production of seed capsules (and seeds) in irJAZd plants were reduced by around 20 

percent. Our data suggest that NaJAZd is required for a proper accumulation and/or 

maintenance of NaMYB305 transcript levels in developing flowers, revealing a new 

function and requirement of NaMYB305 in flower retention during later stages of flowering 

that can optimize fitness and seed production in plants.  

 

Materials and Methods 

Plant material and growth conditions   

All experiments were conducted with 31st inbreed generation of N. attenuata. Seeds 

were germinated and grown in the glasshouse as previously described in Krügel et al. [70]. 

Plants were maintained under 16 h daylight supplemented by Philips Master Sun-T PIA 

Agro 400 W or 600 W sodium lights at 23-25 °C and 8 h dark at 19-23 °C, 45 to 55 % 

relative humidity.  

 To generate inverted repeat (ir) JAZd plants, we cloned a 303 bp fragment of 

NaJAZd gene (Figure S1A) as an inverted repeat into pSOL8 transformation vector [71] 

containing hygromycin (hptII) resistance gene as plant selection maker (Figure S1B). 

Agrobacterium tumefaciens-mediated plant transformation was conducted essentially as 

described in Krügel et al. [70]. The best NaJAZd-silenced, single T-DNA insertion 

transgenic lines (irJAZd-4, -8, and -10) were selected on hygromycin and subjected to 

Southern blot (Figure S1C) and quantitative real-time PCR (qPCR) analyses as described in 

Oh et al. [31]. 
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Experiments were conducted with transition leaves (i.e., leaves undergoing the 

source-sink transition at node -1) using approximately 30-d-old rosette-stage N. attenuata 

plants. Four different developmental stages of flowers were collected from approximately 

57-d-old flowering N. attenuata plants. 

 

Quantitative real-time PCR 

Total RNA was extracted from approximately 100 mg of frozen leaves or flower 

tissues ground in liquid nitrogen using Trizol reagent as recommended by manufacturer 

(Invitrogen). Total RNA was treated with RQ1 RNase-Free DNase (Promega), phenol 

extracted and precipitated by addition of 3M sodium acetate (pH 5.2) and 100%  ethanol. 

First strand cDNA was synthesized from 1 µg of RNA using oligo-dT primer (Fermentas) 

and RevertAidTM H Minus reverse transcriptase (Fermentas) following manufacturer’s 

protocol. Quantitative real-time PCR (qPCR) was conducted with the core reagent kit for 

SYBR Green I (Eurogentec) and gene-specific primer pairs (Table S3) using Mx3005P 

PCR cycler (Stratagene). Relative transcript abundances were calculated from dilution 

series of standard curves and normalized by NtEF1α gene (N. tabacum elongation factor 

1α) expression.  

 

Herbivore performance in the glasshouse 

To determine herbivore performance, freshly hatched specialist herbivore M. sexta 

neonates were placed on selected rosette leaves of 20 each WT and 2 independent irJAZd 

line plants (irJAZd-4 and -8). The larval fresh mass was measured on 4th, 6th, 8th, 10th, 12th d 

after initial feeding. 

 

Phytohormone analyses 

To determine JA, JA-Ile, SA and ABA levels in WT and irJAZd plants, 

phytohormones were extracted from approximately 100 mg frozen leaves or flowers. Plant 

tissues were homogenized with 1 mL of internal standard (200 ng of [2H2]JA, and 40 ng 

each of JA-[13C6]Ile, [2H4]SA and  [2H6]ABA)-spiked ethyl acetate and 2 steel balls in a 

Genogrider 2000 (SPEX Certi Prep) at 1000 strokes per minute for 10 min.  The extracts 

were centrifuged at 16,100 g at 4 °C for 15 min, and the upper organic phases were 

transferred and dried in vacuum concentrator (Eppendorf) at 30 °C. The residues were 
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resuspended in 500 μL (for leaf) or 200 μL (for flowers) of 70 % (v/v) methanol: water and 

centrifuged. 10 µL of particle free supernatant was analyzed in Varian 1200 LC-ESI-

MS/MS system (Varian) as described in Oh et al. [31]. 

Ethylene emissions were measured with a photoacoustic spectrometer (INVIVO; 

https://www.invivo-gmbh.de) as described in von Dahl et al. [72]. irJAZd and WT plants 

were grown in the glasshouse until flowering stage and 5 flowers were collected from each 

stage of flowers and used for ethylene measurements in 250 mL flasks. Flowers were 

incubated for 5 h to accumulate ethylene in the flasks and accumulated ethylene in the head 

space was flushed with a 130 to 150 mL/min flow of purified air into spectrometer and 

measured against known amount of ethylene standard. The results were normalized by 

fresh mass of flowers used in each measurement. 

 

Analysis of secondary metabolites by HPLC 

 Plants materials (~100 mg) were homogenized with 1 mL of acetate buffer (60 % 

buffer A; 2.3 mL/L of acetic acid, 3.41 g/L ammonium acetate adjusted to pH 4.8 with 1 M 

NH4OH, and 40 % (v ⁄v) methanol) and analyzed by HPLC (Agilent-HPLC 1100 series) 

coupled with PDA (Photo Diode Array, Agilent) and ELS (Evaporative Light Scattering, 

Varian) detectors as described in Oh et al. [31]. 

 

Field bioassays 

 The field experiments were performed in the native habitat of N. attenuata, the 

Lytle Ranch Preserve, Utah, Santa Clara, USA. The release of transgenic plants was carried 

under APHIS notification 06-242-3r-a3 and the seeds were imported to USA under permit 

number 07-341-101n. The seeds of EV and irJAZd-8 plants were germinated on the seeds 

on Gamborg’s B5 medium as described in earlier section (Plant material and growth 

conditions). About 15 d-old seedlings were transferred to pre-hydrated 50 mm peat pellets 

(Jiffy 703, http://www.jiffypot.com) and seedlings were gradually adapted to the high light 

and low relative humidity of the habitat over a 2-week-period. Finally, pre-adapted rosette-

stage plants were transplanted on the field plot and watered daily until roots have 

established, approximately 2 weeks, then plants were grown without watering. 15 pairs EV 

and irJAZd-8 plants were planted and grown in the field plot and monitored for damage 

from native herbivores. Damage of plants by natural herbivores was determined by 
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estimating the percentages of total leaf area of plants, which was damaged by each 

herbivore, Noctuidae larvae, Spodoptera spp.; flea beetles, Epitrix species; mirids, 

Tupiocoris notatus. A result of representative measurement conducted on 15th, May, 2010 

is shown in the Figure 3. 

 

Seed capsule and flower counts 

 The number of seed capsules and four different developmental stages of flowers 

(buds, elongated-, open-, and abscised flowers) were counted in 3 d intervals from 42 d 

until 63 d after germination that covered complete reproductive stage of N. attenuata 

plants. Seed capsules were counted after complete maturation of plants. For counting 

abscised flowers, the plants were placed in separate plastic trays (30 X 52 cm) and kept 

apart to avoid mixing of abscised flowers. Every 3 d, buds, elongated- and open flowers on 

the plants, and newly abscised flowers on each tray were counted.  

 

Hand-pollination experiments  

Plants were kept in the glasshouse until flowering stage (approximately 55 d after 

germination) and all fully elongated but still green flowers of each WT, irJAZd-4 and 

irJAZd-8 plants were labeled previous evening and half of the flowers were hand-pollinated 

when the flowers opened next morning. Control half-set of the plants remained intact and 

was allowed to self-pollinate only. Hand-pollinations were repeated 4-times with ripe 

pollen from the same flowers by spreading pollen on stigma with fine brush and the 

percentage of mature capsules resulting from hand- and self-pollinated flowers were 

counted after 10 d period.  

 

Microarray experiment   

 Untreated and W+OS-treated leaves of 30-d old WT and irJAZd-8 plants were used 

for microarrays. Total RNA was extracted as described in Kistner and Matamoros, [73] and 

cDNA preparation and hybridizations were performed as described in Kallenbach et al. 

[74]. Raw microarray data were normalized by 75 percentile and log 2 transformed and 

processed by SAM software version 3.11 (Significance Analysis of Microarrays; Stanford 

University, USA; [75]).  For selection and annotation of genes, false discovery rates (FDR) 

≤ 2.09 % and greater than 3-fold signal changes (irJAZd vs. WT) were used.  The genes 
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were annotated after processing each entry by Blast-X program (E-value < 1-5e) and 

classified into groups based on GO classification from TAIR (http://www.arabidopsis.org).  

 

Statistical analyses 

 Data were analyzed with StatView 5.0 software (SAS institute) using appropriate 

methods such as Student t-test for pair comparisons and ANOVA Fisher’s PLSD for 

multiple samples. 
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Figure legends 

Figure 1. Regulation of NaJAZd transcripts and silencing efficiency in irJAZd plants. 

(A) NaJAZd transcript abundances ± SE were determined by quantitative real-time PCR 

(qPCR, n=3) in samples from WT N. attenuata leaves treated with wounding and water 

(W+W), wounding and M. sexta oral secretions (W+OS) harvested at 0, 1, 2, 3, and 24 h 

after elicitation (control leaves remained untreated). (B) Transcript abundances ± SE of 

NaJAZd determined in untreated (control) and 1 h W+OS-treated leaves of three 

independent inverted repeat (ir)-NaJAZd-silenced genotypes (irJAZd-4, -8, and -10) by 

qPCR (n=3). Signals in A and B were normalized by house-keeping EF1  transcript 

abundances determined by qPCR in the same samples. Different letters in B indicate 

significant differences among the combination of genotypes (WT vs. independent NaJAZd 

silenced lines, irJAZd-4, -8, 10) and treatments determined by one-way-ANOVA (P ≤ 

0.05). 

 

Figure 2. Defense responses against specialized herbivore M. sexta are mostly 

unaltered in irJAZd plants. (A) Herbivory performance of M. sexta on rosette leaves of 

WT and two independent irJAZd lines (irJAZd-4 and -8) was determined by measuring 

larval mass at 4, 6, 8, 10 and 12 d after placement of a freshly hatched neonate on the 

plants.  Mean fresh masses ± SE of irJAZd-4 and -8-fed caterpillars (n=20) were not 

significantly different from WT-fed caterpillars. (B) Mean ± SE levels of JA-Ile (n=3) 

determined by LC- ESI-MS/MS showed no significant differences in irJAZd compared to 

WT leaves. (C) Mean ± SE levels of nicotine (n=3)  determined by HPLC coupled to PDA 

(Photo Diode Array) detector were significantly higher at 48 and 72 h after W+OS 

treatment of irJAZd plants compared to WT. Statistical differences in (A)-(C) were 

determined by one-way-ANOVA (P ≤ 0.05). Different letters in C indicate significant 

differences among the different genotypes (WT vs. independent NaJAZd silenced lines, 

irJAZd-4, -8, 10) at the same time points. FM, fresh mass. 

 

Figure 3. Plant damage caused by herbivores in N. attenuata’s native habitat. EV and 

irJAZd-8 plants were planted in a size-matched paired-design in their native habitat, Great 

Basin Desert, Utah, USA and natural herbivore damage was scored throughout the 2010 

field season. Herbivore damage was determined as the % of leaf canopy damaged by (1) 
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cell-damaging feeding of Tupiocoris notatus mirid bugs (mirids), (2) the small feeding 

holes that characterize flea beetle feeding, and (3) leaf chewing Lepidopteran larvae 

(Noctuidae). 

 

Figure 4.  NaJAZd-silencing negatively affects seed capsule production. WT and two 

independent of irJAZd lines (irJAZd-4 and -8) were grown in the glasshouse and their 

capsules were counted at specified time points. irJAZd plants produced significantly fewer 

seed capsules at 51, 54, 57, 60 and 63 d after germination compared to WT plants; 

significant differences between genotypes were determined at each time point by one-way-

ANOVA (**P≤ 0.01, ***P ≤ 0.001). There were no significant differences in number of 

seed capsules between two independent irJAZd lines (irJAZd-4 and -8). 

 

Figure 5.  NaJAZd counteracts flower abscission in N. attenuata. Each individual plant 

was placed in an individual plastic tray (30 x 52 cm) in the glasshouse to avoid mixing of 

abscised flowers, and number of buds (A), elongated flowers (B), open flowers (C), and 

abscised flowers (D) in each plant from 42 d to 63 d after germination was determined in 3 

d intervals. Both irJAZd-4 and -8 plants had similar number of buds and elongated flowers 

as WT plants but displayed significantly reduced numbers of open flowers (significant at 

48, 51, 63 d) and higher numbers of abscised flowers (significant at most time points) 

compared to WT plants. Significant differences between genotypes were determined 

separately for each time point by one-way-ANOVA (*P≤ 0.05, **P≤ 0.01, ***P ≤ 0.001).  

 

Figure 6.  NaJAZd regulates phytohormone levels and flower development-related 

genes. WT and irJAZd plants (irJAZd-4 and -8) were grown in glasshouse and 4 different 

developmental stages of flowers (F1, F2, F3, and F4) were collected 57 d after germination. 

(A) Transcript abundances of NaJAZd determined by qPCR in irJAZd flowers were 

significantly lower compared to WT. (B) Mean JA and JA-Ile levels ± SE determined by 

LC-ESI-MS/MS and  mean ethylene levels ± SE measured by photoacoustic spectrometer 

using 5 flowers of each stage. (C) Transcripts abundances of flower development-related 

genes, NaMYB305, NaNEC1, and NaCHAL determined by qPCR: irJAZd-8 plants were 

impaired in expression of NaMYB305 and NaNEC1genes in last stage of flower 

development (F4) while NaCHAL transcripts remain unaltered in irJAZd-8 compared to 
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WT flowers. Bars in (C) show EF1 -normalized relative transcript abundances ± SE 

(n=4).  Statistical differences in phytohormones, JA, JA-Ile, (n=4) and transcript 

abundances were determined by Student t-test, and differences in ethylene was determined 

by one-way-ANOVA. Asterisks represent significant differences between WT and irJAZd 

in same stage of flowers (*P≤0.05, **P≤ 0.01, ***P≤ 0.001). FM, fresh mass. 

 

Supporting information 

Figure S1. Generation of stable NaJAZd-silenced N. attenuata plants. (A) A 303bp 

region in NaJAZd gene used for gene silencing is shown in red letters. (B) The pSOL8JAZd 

vector containing inverted repeat of NaJAZd gene used for Agrobacterium tumefaciens-

mediated transformation and generation of stably silenced N. attenuata irJAZd plants. (C) 

Southern blot analysis of 6 independently transformed irJAZd (irJAZd-1, -2, -4, -8, and -

10) lines and WT. The genomic DNA was digested with XbaI enzyme and hybridized with 

a 32P-labeled probe coding for the hygromycin resistance gene located between right and 

left T-DNA borders of the transformation vector pSOL8JAZd. The black boxes indicate 

single T-DNA insertion lines selected for further experiments:  irJAZd-4, -8 and -10. 

 

Figure S2. Transcript abundances of other NaJAZ genes in irJAZd plants. Transcript 

abundances of other NaJAZ genes were determined by qPCR in the leaves of irJAZd and 

WT plants before and 1h after W+OS elicitation; bars indicate EF1 -normalized relative 

transcript abundances ± SE (n=3) and different letters indicate significant differences 

among the combination of genotypes (WT vs. independent NaJAZd-silenced lines, irJAZd-

4, -8, 10) and treatments determined by one-way-ANOVA (P ≤ 0.05). 

 

Figure S3. NaJAZd-silencing does not significantly alter basal or herbivory-induced 

phytohormones levels. Rosette stage plants of WT and irJAZd (irJAZd-4, -8 and -10) were 

treated with W+OS and harvested before, 1 and 2 h after treatment. Mean ± SE levels of 

JA, ABA and SA (n=3) were determined by LC- ESI-MS/MS using internal deuterium-

labeled phytohormone standards. Different letters indicate significant differences among 

the different genotypes (WT vs. independent NaJAZd silenced lines, irJAZd-4, -8, 10) at 

the same time points by ANOVA (P ≤ 0.05). FM, fresh mass. 
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Figure S4. NaJAZd-deficiency does not affect levels of defense-related secondary 

metabolites, HGL-DTGs and TPIs, in irJAZd plants. Rosette stage WT and irJAZd 

(irJAZh-4, -8 and -10) plants were treated with W+OS and harvested before and 24, 48, and 

72 h after treatment for determination of total HGL-DTGs levels and trypsin protease 

inhibitors (TPIs) activity. (A) Mean ± SE levels of total HGL-DTGs measured by HPLC 

coupled to ELS (Evaporative Light Scattering) detector (n=3). (B) Mean ± SE levels of 

TPIs determined by radial diffusion assay (n=3). Different letters in A and B indicate 

significant differences among the different genotypes (WT vs. independent NaJAZd 

silenced lines, irJAZd-4, -8, 10) at the same time point determined by one-way-ANOVA (P 

≤ 0.05). FM, fresh mass. 

 

Figure S5. Hand-pollination does not rescue seed capsule formation in irJAZd plants. 

Plants were kept in the glasshouse until flowering stage (approximately 55 d after 

germination) and, in the previous evening, all fully elongated flowers ready to open next 

morning were labeled with color strings. In half of the plants, hand- pollination was 

conducted while second half remained exclusively self-pollinated. Approximately 10 days 

later, mature seed capsules resulting from labeled flowers in each group were counted and 

percentage of capsules originating from self- and  hand-pollination groups of WT and 

irJAZd plants were determined (n=24). Different letters indicate significant differences 

among the different genotypes (WT vs. independent NaJAZd-silenced lines, irJAZd-4, -8) 

at the same condition determined by one-way-ANOVA (P ≤ 0.05).  

 

Table S1. Up-regulated genes in irJAZd plants compared to WT plants determined by 

microarrays 

 

Table S2. Down-regulated genes in irJAZd plants compared to WT plants determined by 

microarrays 

 

Table S3. Primer sequences used in quantitative real time PCR (qPCR) 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4. 
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Figure S5. 
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Table S1. 
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Table S2. 

 

 
 



Chapter 5 

140 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Manuscript III – Functional study of NaJAZd 

141 
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Discussion 
Despite the long history of plant-herbivore interactions (about 450 million years), 

the first peer-reviewed scientific articles reporting that plants defense metabolites are toxic 

to herbivores and affect herbivore performance and herbivore selection of host plants 

according to their metabolites were published in early 1960s (Barnett, 1959; Farkas and 

Kiraaly, 1962; Pringle and Scheffer, 1964). The observation of such interactions in the field 

led to the hypothesis of the co-evolution of plants and herbivores, first proposed by Ehrlich 

and Raven (Ehrlich and Raven, 1964). Our knowledge of plant-herbivore interactions has 

greatly increased since those first papers, now including the effects of complex abiotic and 

biotic factors on various plants and herbivore species (Whittaker and Feeny, 1971; McKey, 

1974; Feeny, 1977; Berenbaum, 1983; Coley, 1988; Thompson, 1999; Cunningham et al., 

2001; Leimu et al., 2012). The accumulated observations of changes in morphology and 

chemical composition of plants following stress or damage from herbivores led to the 

proposal of optimal defense theory. Defense responses help plants to survive and propagate 

in nature, but production of defense metabolites is costly (production, storage, 

translocation, breakdown of functional compounds), while plants have only limited 

resources to use. Plants allocate their resources to both chemical and mechanical 

(structural) defense, depend on the optimized cost-benefit ratio for maximization of fitness, 

considering the risk of attack (how often, what kind), how valuable plant parts are which 

are being attacked, and what is the cost of defense production (McKey, 1974; Coley et al., 

1985; Karban and Myers, 1989; Zangerl and Rutledge, 1996; Ohnmeiss and Baldwin, 

2000).  Because plant tissues (e.g. young and old leaves, roots, flowers, etc.) have different 

value depending on ontogeny, plants tend to allocate more resources to more valuable 

tissues according to optimal defense. In other words, plants use different strategies of 

defense to protect differently valuable tissues: (1) constitutive levels of defensive secondary 

metabolites are typically much higher in reproductive, younger and developing tissues than 

old tissues, (2) young tissues are more responsive to stress (herbivory) and show greater 

and faster increases of induced metabolites compared to older tissues and (3) reproductive 

organs such as flowers and developing seeds have the strongest defense responses, with 

much higher constitutive levels of secondary metabolites compared than other organs. 

Reproductive organs are obviously the most valuable tissues for annual plants because they 
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bear the genetic information which will be passed on to the next generation, and attract 

pollinators and seed dispersers to do so. The values of specific plant tissues can also change 

over ontogeny: different developmental stages of plants respond differently to the same 

type and strength of stress. Previous studies showed that younger stages of plants respond 

more to stress compared to flowering stages, and the reduced responsiveness can be 

recovered by removing flowers (Diezel et al., 2011). Optimal defense theory states that 

tissue value and resource allocation are positively correlated in plants: it allows us to 

understand herbivore behavior on the plants, their feeding patterns, and preferences for 

particular stages of plants and tissue types (reviewed in (Meldau et al., 2012)).  

 

Jasmonate signaling cascade in plants 

Jasmonates are well known phytohormones that regulate defense against abiotic and 

biotic stress, as well as growth and development of plants, as I described in my general 

introduction. In response to jasmonates, plants accumulate a large variety of metabolites 

that reflect the extreme chemical diversity of terrestrial plants. However, in contrast to the 

well-characterized jasmonate biosynthesis pathway, many regulatory mechanisms of 

jasmonate signaling still remain unclear. Although the jasmonate co-receptor, SCFCOI1 

complex; crucial negative regulators, JAZ proteins; and active hormone, JA-Ile, have been 

discovered;  precise functions of the individual JAZ proteins as repressors of jasmonate 

signaling rarely have been reported (reviewed in (Kazan and Manners, 2012)). In this 

dissertation, I identified a novel JAZ family (12 JAZ proteins) in the native tobacco 

Nicotiana attenuata (N. attenuata), and examined the function of two individual JAZ 

proteins, JAZh and JAZd, in both plant development and defense responses. In addition, I 

identified a potential regulatory partner of NaJAZd, the NaMYB305 protein that is known 

as a master regulator of flower development in plants. 

 

Identification of a novel JAZ family in Nicotiana attenuata 

In 2007, 12 novel jasmonate-inducible ZIM domain-containing proteins, Jasmonate 

ZIM domain (JAZ) proteins, were identified by microarray analysis of methyl jasmonate 

(MeJA)-treated plants (7 JAZs) and sequence homology search (5 additional JAZs) in 

Arabidopsis (Chini et al., 2007; Thines et al., 2007). Following this report, JAZ proteins 

were identified in many other plant species including N. attenuata. In chapter 3, we 
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identified 12 putative JAZ proteins in N. attenuata that complemented three already known 

JAZ1, JAZ2 and JAZ3 proteins from N. tabacum (Shoji et al., 2008).  Similar to the JAZ 

family discovered in Arabidopsis, all NaJAZ proteins contain two conserved domains, ZIM 

and Jas, and are highly responsive to simulated herbivory. Interestingly, NaJAZ genes 

showed spatially and temporally different transcript accumulation patterns in local and 

systemic tissues induced by different stimuli, such as mechanical wounding, simulated 

herbivory, and even in untreated tissues. These data are consistent with previous studies 

which showed that wounding and herbivore feeding induced local and systemic JAZ gene 

expression in Arabidopsis (Chung et al., 2008; Koo et al., 2009). In contrast to previous 

studies focused on expression and systemic signaling in the leaves, I examined, apart from 

the leaves, the expression and spread of systemic signals into roots. These data suggest that 

a subset of JAZ proteins may actually play an important role in roots when herbivores 

attack the leaves. Nicotine is a well-known defensive secondary metabolite in Nicotiana 

spp. which is synthesized in roots after herbivore attack, then transported to locally 

damaged leaves (Baldwin, 1989; Baldwin et al., 1997; Shoji et al., 2000; Steppuhn et al., 

2004). Accumulation of specific NaJAZ transcripts in the roots further supports the 

hypothesis that JAZ proteins may have specific functions in herbivory-induced nicotine 

biosynthesis and/or transport to the shoot in Nicotiana attenuata. 

NaJAZ proteins can be categorized into different sub-groups according to their 

structural features as described in chapter 3. It is already known that JAZ proteins have 

quite diverse sequences except for the two highly conserved motifs, TIFY and Jas. Previous 

studies showed that some of the JAZ genes may have alternative spliceoforms which could 

play important roles in JAZ-SCFCOI1 complex interactions and jasmonate signaling in 

Arabidopsis: two spliceoforms of the AtJAZ10 protein showed differential binding 

affinities to the SCFCOI1 complex (Thines et al., 2007; Chung and Howe, 2009; Chung et 

al., 2010). I also found two cases of alternative splicing in N. attenuata: NaJAZc and 

NaJAZk showed different spliceoforms (cDNA): while NaJAZc proteins differed in the 

presence of an internal 32 amino acid sequence (NaJAZc.1 and NaJAZc.2), NaJAZk 

occurred in two forms, one that completely lacked the Jas motif (NaJAZk.2) and another 

which contained an incomplete Jas sequence (NaJAZk.1). Further analysis is required to 

understand the exact functions of these different modifications in regulating JAZ-mediated 

jasmonate signaling.  
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Recently, Sheard et al. (2010) showed that JAZ proteins have a typical degradation 

sequence (degron; LPIARR) in their Jas motif that is required for interaction with the 

COI1protein (Sheard et al., 2010) and is therefore conserved in most AtJAZ proteins 

(Chung et al., 2009). However, several AtJAZ proteins (AtJAZ 4, 5, 6, 7 and 8) have an 

X3SMK sequence in the corresponding region of the degron sequence in Jas, and these JAZ 

proteins are therefore unable to directly interact with SCFCOI1 complex (Pauwels and 

Goossens, 2011; Shyu et al., 2012). N. attenuata JAZ proteins show a similar pattern: while 

NaJAZa, -d, -h and -l contain typical degron sequence, NaJAZf and -j contain the X3SMK 

sequence in the corresponding region of degron (Text 1, unpublished data). Additional 

experimental evidence is required to demonstrate whether variation in the degron sequence 

in NaJAZ proteins also plays an important role in interaction of NaJAZ-SCFCOI1 complex. 

The expectation would be that degron sequence-containing NaJAZ proteins are able to 

interact with NaCOI1, while this should not occur in X3SMK sequence-containing NaJAZ 

proteins. Several questions arise from this assumption, such as the presence of alternative 

COI proteins capable of interacting with non-degron-containing JAZ proteins, or the 

intrinsic role and targets of non-degron JAZ proteins in jasmonate signaling. 

The data in both Arabidopsis and N. attenuata suggest that a subgroup of JAZ 

proteins require one or more co-factors to interact with SCFCOI1 complex, or interact with 

other adaptor protein(s), such as NINJA, to regulate distinct JAZ-mediated jasmonate 

signaling. However, another subgroup of AtJAZ proteins contains LxLxL-type EAR (ERF-

associated amphiphilic repression) or DNLxxP-type EAR-like motifs in the N-terminus 

region of the protein (Shyu et al., 2012). While most JAZ proteins recruit a NINJA-TPL 

complex as a co-repressor of jasmonate signaling (Pauwels et al., 2010), these AtJAZ 

(AtJAZ5, -6, -7 and-8 ) can directly recruit TPL protein and repress downstream jasmonate-

responsive transcriptional events without the NINJA adaptor protein and its EAR motif. 

Shyu et al. (2012) demonstrated that the EAR-motif is required for the AtJAZ8-mediated 

response of jasmonate-dependent root growth inhibition, but not for regulation of 

reproductive processes such as pollen development. In my work, I found that NaJAZf, -j,    

-m and -l also contain their own LxLxL-type EAR motif, while NaJAZb contained a 

DLNxxP-type EAR-like motif in its N-terminus (Text 1, unpublished data). This suggests 

that these NaJAZ proteins are likely to recruit TPL protein and repress target gene 

transcription without assistance from NINJA, but further experiments are required to 
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confirm this hypothesis. 

Alternative splicing, sequence variation, and distinct domain architectures in NaJAZ 

proteins support the general theory proposed in several studies that different subgroups of 

JAZ proteins have different regulatory functions with different co-regulator(s) and target 

transcription factors, in order to fine-tune numerous jasmonate-controlled responses in 

growth, development, and defense.  

 

Text 1. The degradation sequence (LPIARR) and EAR (LxLxL- or DNLxxP-type) motif   

in N. attenuata JAZ proteins 
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Text 1. (continued) 
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Crosstalk in JAZ proteins family   

I used targeted gene silencing by inverted repeat (ir)-mediated RNA interference 

(RNAi) to study the function of individual JAZ proteins in N. attenuata. Targeted gene 

silencing is very useful in studies of individual gene function, but it also carries a 

considerable risk compared to insertion mutagenesis of non-specific cross-silencing for 

genes that belong to large gene families with high sequence homology. This is especially 

true in plant species with unknown or incomplete genome sequences. To be sure that the 

phenotype of both NaJAZh- and NaJAZd-silenced plants described in chapter 3 and 

chapter 5 was only caused by single gene silencing, I measured the accumulation of all 12 

NaJAZ gene transcripts in WT vs. NaJAZh- and NaJAZd-silenced plants. Neither NaJAZh- 

nor NaJAZd-silenced plants showed cross-silencing of the other non-target JAZ genes. 

However, I observed an unexpected up-regulation of several JAZ genes in NaJAZh-silenced 

plants: NaJAZb, -j, and -f transcripts were significantly higher after simulated herbivory in 

NaJAZh-silenced plants compared to WT plants (Chapter 3), which suggested that NaJAZh 

silencing can directly or indirectly affect the expression of other JAZ genes. This data were 

further supported by the nicotine phenotype of JAZh-silenced plants. Unexpectedly, 

NaJAZh silencing repressed nicotine accumulation in the leaves after simulated herbivory, 

in sharp contrast to the resulting increase in other defensive secondary metabolites, HGL-

DTGs and TPI activity (Chapter 3). NaJAZh-silencing-mediated increases in NaJAZ 

expression may affect nicotine biosynthesis or transport to leaves if these JAZ genes control 

the accumulation of this metabolite.  Recently, JAZ expression (AtJAZ1, AtJAZ2 and 

AtJAZ9) in roots was also reported in Arabidopsis after local wounding (Hasegawa et al., 

2011; Sogabe et al., 2011), supporting the hypothesis that a subset of JAZ proteins may 

have specific functions in the roots together with recently reported root-expressed MYC2-

like genes and/or AP2/ERF transcription factors reported as positive regulators of nicotine 

biosynthesis in tobacco (Shoji et al., 2010; Shoji and Hashimoto, 2011; Zhang et al., 2012). 

Based on my results, an active cross-talk among JAZ proteins may exist and play important 

role in JAZ-mediated jasmonate-dependent plant responses. In addition, although very 

weak relative to NaJAZh silencing by RNAi, I observed a slight but significant down-

regulation of NaJAZh transcripts after simulated herbivory in NaJAZd-silenced plants 

(Chapter 5), suggesting that NaJAZd may be required for a full up-regulation of NaJAZh 

expression after herbivore attack, and presenting another example of JAZ crosstalk. 
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Although further studies are required to demonstrate the precise function of crosstalk 

among the JAZ proteins in JAZ-mediated jasmonate signaling, we provided the first insight 

into this phenomenon.  

 

Functions of JAZ proteins in plant defense against herbivory 

Plants accumulate a huge variety of defense metabolites to defend themselves 

against herbivory such as glucosinolates (amino acid derivatives) in Arabidopsis (Rask et 

al., 2000; Mewis et al., 2006; Shroff et al., 2008), nicotinic alkaloids and 17-

hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) in tobacco (Baldwin et al., 

1997; Shoji et al., 2000; Steppuhn et al., 2004; Heiling et al., 2010), and protease inhibitors 

(PIs) in most plants (Koiwa et al., 1997; Zavala et al., 2004; Habib and Fazil, 2007; Hartl et 

al., 2010). These defense metabolites can reduce damage from herbivores by acting as 

toxins or anti-digestive compounds. Since the discovery of JAZ proteins as negative 

regulators of jasmonate signaling, much effort has been focusing on functional studies of 

these proteins in plants. Shoji et al. (2008) showed that a dominant negative form of 

NtJAZ1 and NtJAZ3 proteins repressed MeJA-induced nicotine accumulation and related 

alkaloids in tobacco hairy roots and cell cultures. Demianski et al. (2012) showed that 

JAZ10-silenced Arabidopsis is more susceptible to Pseudomonas syringae DC3000 

infection, suggesting that AtJAZ10 is a negative regulator of disease symptom development 

during Pseudomonas syringae DC3000 infection. Although jasmonates are known to be 

important hormones in defense against herbivory (Browse, 2009), and JAZ proteins are 

central switches in jasmonate signaling, the defense-related phenotypes associated with 

silencing of individual JAZ have been rarely reported. The lack of phenotypes was mainly 

considered to be functional redundancy of JAZ proteins in plants.  

Nevertheless, in chapter 3 and chapter 5, I was able to demonstrate the individual 

function of two N. attenuata JAZ proteins, NaJAZh and NaJAZd. I used inverted-repeat (ir) 

RNAi-mediated NaJAZd- or NaJAZh-silenced plants to conduct functional studies of these 

genes in jasmonate signaling and defense.  

 

Direct (HGL-DTGs and TPIs) and indirect (VOCs) defenses against herbivory 

NaJAZh silencing strongly reduced the performance of the specialist herbivore M. 

sexta on NaJAZh-silenced plants compared with WT plants in the glasshouse. Correlated to 
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herbivore performance, NaJAZh silencing strongly upregulated both constitutive and 

inducible levels of secondary metabolites, HGL-DTGs and TPIs that act as direct defense 

(see general introduction) as well as volatile organic compounds (VOCs such as GLVs, 

sesquiterpenes) emissions serving as indirect defense (see general introduction) in N. 

attenuata. In contrast to other defense metabolites described above, nicotine was 

significantly reduced in NaJAZh-silenced plants compared to WT plants. This data 

suggested that nicotine is most likely regulated by a distinct set of regulators (possibly 

NaJAZf), while production of HGL-DTGs, TPIs and volatile organic compounds in N. 

attenuata is connected to a communal regulatory defense node. It is also supported by 

crosstalk among individual JAZ proteins described in the earlier section.  

To examine the ecological relevance of NaJAZh function, I planted EV (control) 

and NaJAZh-silenced plants in a paired design in the native habitat of N. attenuata, the 

Great Basin Desert, Utah, USA. However, in two field seasons, I did not observe any 

differences in damage from native herbivores between WT and NaJAZh-silenced plants, 

leading to two hypothesises: (1) the Utah ecotype of N. attenuata used in this study may 

already have the most efficient defense system, so additional defensive metabolites are not 

advantageous to these plants, and (2)  because nicotine is one of the most effective 

metabolites against native herbivores in natural habitat of N. attenuata, lower nicotine 

levels in NaJAZh-silenced plants counteracted the advantage gained from high levels of 

TPIs and HGL-DTGs. Further experiments are required to understand the equally good 

performance of EV and NaJAZh-silenced plants in nature. In chapter 3, I demonstrated 

that NaJAZh is an important negative master regulator of a specific subset of JAZ-mediated 

jasmonate-dependent defense responses, including both constitutive and inducible direct 

(TPIs, HGL-DTGs) and indirect (VOCs) defense in N. attenuata. It remains to be 

determined if this is a general case in plants or specific evolutionary trait acquired by N. 

attenuata during its long and exceptionally intense interactions with herbivores in nature. 

 

Nicotine biosynthesis and/or transport 

In a follow-up study (Chapter 5), I used another transgenic ir-line silenced in the 

expression of NaJAZd by RNAi to examine the function of NaJAZd in N. attenuata. 

NaJAZd-silenced plants displayed greater accumulation of nicotine after simulated 

herbivory, but other defense metabolites, HGL-DTGs and TPIs that are known as typical 
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defense related secondary metabolites in Nicotiana spp. remained unchanged. In addition, 

increased nicotine levels in NaJAZd-silenced plants were not sufficient to affect the 

performance of the specialist herbivore M. sexta in glasshouse as well as several native 

herbivores of N. attenuata monitored in the native habitat of N. attenuata, the Great Basin 

Desert, Utah, USA. Overall, the data suggest that NaJAZd is only a minor negative 

regulator involved in defense against herbivory, particularly in nicotine biosynthesis and/or 

transport to the leaves.  

Despite predicted or observed redundancy in the function of JAZ proteins in 

Arabidopsis (Chini et al., 2007; Thines et al., 2007; Chung and Howe, 2009), I was able to 

show that silencing of a single JAZ gene can affect various jasmonate-dependent defense 

responses, suggesting a branched regulation of jasmonate-mediated defense metabolites in 

tobacco and their control by separate JAZ proteins (Chapter 3 and Chapter 5).  

 

Functions of JAZ proteins in plant development 

NaJAZ-silenced N. attenuata plants showed not only defense-related phenotypes but 

also non-defense related phenotypes such as alteration of developmental processes. This 

finding is not surprising as jasmonates are already known to regulate various aspects of 

plant development apart from defense responses (reviewed in (Wasternack, 2007)).  To 

date, the lack of JAZ proteins in plants resulted in desensitization of jasmonate-induced 

root inhibition, defects in pollen development, anthocyanin accumulation, and trichome 

initiation in Arabidopsis (reviewed in (Browse and Wager, 2012)).   

 

Control of ROS accumulation in leaves 

In N. attenuata, NaJAZh silencing did not cause a strong growth phenotype until the 

transition stage between vegetative growth and flowering, when the plants displayed visible 

necrotic lesions on the leaves. These symptoms remained restricted to the leaves and did 

not affect flowers and seed capsules (Chapter 3). The necrotic lesion symptoms first 

spontaneously appeared as small spots on cotyledonary leaves, spreading to other leaves in 

ontogenic order. Necrotic lesions resembled programed cell death (PCD) that occurs in 

response to pathogen infection, wounding, ozone and UV exposure, cold and high light 

stress (Pennell and Lamb, 1997; Rao et al., 2000a; Rao et al., 2000b; Beers and McDowell, 

2001; Pasqualini et al., 2003; Hatsugai et al., 2004; Van den Burg et al., 2008). Apart from 
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stress responses, PCD also occurs in plant growth and development during pollen 

development, senescence and vascular tissue differentiation (Wang et al., 1996; Calderon-

Urrea and Dellaporta, 1999; Buckner et al., 2000; Wu and Cheung, 2000; Lee and Chen, 

2002). However, the NaJAZh-silencing-induced necrotic lesion symptoms not related to 

stress because they occurred spontaneously in NaJAZh-silenced plants. PCD is also closely 

associated with accumulation of ROS (reactive oxygen species; e.g. hydrogen peroxide, 

superoxide anion, hydroxyl radicals, singlet oxygen and nitric oxide) that leads to oxidative 

damage and/or apoptotic death of plant cells (reviewed in (Quan et al., 2008)). In chapter 

3, NaJAZh-silenced plants showed higher accumulation of hydrogen peroxide (H2O2) as 

well as transcripts of PCD marker genes (Hin1, Hsr203, and NaVPE361). From these data I 

formulated two hypothesises: (1) the first hypothesis is that NaJAZh works as a suppressor 

of ROS in N. attenuata. Previously, it has been shown that MeJA treatment induces ROS 

production in plants (Orozco-Cárdenas et al., 2001; Hung and Kao, 2007; Reinbothe et al., 

2009), and it was shown that Atrboh (respiratory burst oxidase homolog) D and F genes 

were required for COI1-dependent H2O2 production in Arabidopsis leaves treated with 

MeJA (Maruta et al., 2011). In particular, H2O2 accumulation was essential for the 

induction of jasmonate-dependent genes such as VSP1, ANAC019 and ANAC055, 

suggesting that jasmonate-controlled ROS is playing an active role as secondary messenger 

in various physiological and defense-related processes in plants. (2) NaJAZh plays a role in 

control of senescence process occurring in mature tobacco plants, possibly by controlling 

ROS levels in the oldest leaves. A number of previous studies suggested that jasmonate 

signaling is involved in senescence in plants (Weidhase et al., 1987; Parthier, 1990; He et 

al., 2002; Shan et al., 2011). However, the role of jasmonates in senescence process 

remains unclear because (1) jasmonate-induced senescence generally differs from natural 

age-related senescence process and (2) no jasmonate signaling and biosynthetic mutant 

plants showed obvious senescence-related phenotypes (Schommer et al., 2008; Seltmann et 

al., 2010). Although further research is required to establish the role of jasmonates in ROS 

accumulation in plants, my work addressed a novel function of JAZ proteins: NaJAZh 

plays an important role in accumulation of H2O2 and transcripts of PCD marker genes in N. 

attenuata.  
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Flower abscission and seed capsule production 

By connecting two originally independent parts of my project, I demonstrated that 

JAZd counteracts flower abscission in N. attenuata plants via control of a master regulator 

of flower development, NaMYB305 (Chapter 5). Similar to NaJAZh-silenced plants, 

NaJAZd-silenced plants did not show any strong growth phenotypes until flowering and 

seed production when they showed significantly fewer seed capsules (reduced by ~20% 

compared to WT level) caused by increased premature flower abscission in later flower 

developmental stages. I examined the function of NaJAZd in four different developmental 

stages of flowers using WT and NaJAZd-silenced plants. Interestingly, NaJAZd-silenced 

flowers showed no difference in ethylene emissions compared to WT flowers, although 

ethylene is well known to regulate flower abscission (reviewed in (Klee and Clark, 2010)). 

In addition, NaJAZd-silencing-mediated flower abscission occurred in pedicels of 

inflorescences that is different from ethylene-mediated corolla abscission and separation of 

sepals in plants (Patterson and Bleecker, 2004; Cho et al., 2008). My data therefore 

suggested that NaJAZd-mediated flower abscission is independent of ethylene 

concentrations. 

In contrast to ethylene, NaJAZd-silencing significantly repressed JA and JA-Ile in 

early- and middle developmental stages of flowers which re-linked NaJAZd to its expected 

function in jasmonate signaling. Altered JA and/or JA-Ile levels, or jasmonate signaling, 

caused by NaJAZd silencing likely affects flower abscission rates in late flower 

developmental stages in N. attenuata. However, other jasmonate-deficient N. attenuata 

plants such as irAOS (silenced in the expression of allene oxide synthase) and irCOI1 

(silenced in the expression of coronatine insensitive 1) plants do not show similar flower 

abscission phenotypes. Therefore, the question of how NaJAZd-regulated jasmonate 

signaling actually controls flower abscission remains to be determined. Nevertheless, the 

phenotype caused by NaJAZd silencing and described in chapter 5 provides another novel 

insight into jasmonates’ function in plants and flower development. Until now, known 

jasmonate-mediated regulation of flower development was limited to male sterility caused 

by defects in pollen development, such as short pistil length (Feys et al., 1994; McConn and 

Browse, 1996; Xie, 1998; Mandaokar et al., 2006; Paschold et al., 2008; Song et al., 2011). 

Interestingly, the premature flower abscission phenotype in NaJAZd-silenced plants closely 

resembled NaMYB305-silenced plants that I described in chapter 4. MYB transcription 
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factors are key components in regulatory networks controlling development, metabolism 

and responses to abiotic and biotic stresses in all eukaryotes (reviewed in (Dubos et al., 

2010)). R2-R3-type MYB transcription factors regulate several flower developmental 

processes including flower opening, floral nectar production, and nectary maturation ((Liu 

et al., 2009; Liu and Thornburg, 2012) and chapter 4). The plants silenced in expression of 

the NaMYB305 gene showed premature flower abscission in the early flower 

developmental stage: they fail to enter anthesis and later did not produce any seed capsules 

or seeds required for propagation. In the case of NaMYB305-silenced plants, the flower 

abscission phenotype was partially recovered by treatment with the ethylene inhibitor, 1-

MCP, which produced some open flowers but at a very low success rate. To study the 

relationship between NaJAZd and NaMYB305 in flower abscission, I examined transcript 

abundances of NaMYB305 in four different developmental stages of WT and NaJAZd-

silenced flowers (Chapter 5). Both WT and NaJAZd-silenced flowers showed gradually 

increasing levels of NaMYB305 expression through the early- and middle developmental 

stages, but the last stage (open flowers) of NaJAZd-silenced flowers showed significantly 

lower transcript accumulation compared to WT flowers, suggesting that NaMYB305 may 

play a role in regulation of flower abscission. I proposed that NaJAZd is required to 

maintain optimal levels of JA and/or JA-Ile throughout flower development, which in turn 

provides for the sufficient expression and function of the MYB305 transcriptional 

regulator.  

In addition, I examined global transcriptional changes in WT and NaJAZd-silenced 

plants after simulated herbivory (Chapter 5). Remarkably, NaJAZd silencing repressed 

several primary metabolic genes (e.g. sugar transporter, unknown glycosyltransferase, 

fructokinase, putative beta-1, 3-glucan synthase, 6-phosphofructokinase 4 and several other 

genes) in the leaves. It proposed an alternative hypothesis for NaJAZd-silencing-mediated 

phenotype in flowering plants: NaJAZd-mediated control and redistribution of nutrients 

that indirectly affects flower abscission and seed capsule development in N. attenuata. 

Although potentially interesting, this hypothesis remains to be tested. 
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Conclusions and future prospects in research of JAZ proteins 

Many complex plant behaviors such as plant growth, development, and defense are 

regulated by phytohormonal networks. JAZ proteins play important roles not only in 

jasmonate signaling but also in hormone crosstalk. In this dissertation, I provided 

experimental evidence of individual functions of N. attenuata JAZ proteins, NaJAZh 

(chapter 3) and NaJAZd (chapter 5) together with NaMYB305 (chapter4). My data 

strongly support the hypothesis that JAZ proteins are functionally specialized in JAZ-

mediated jasmonate signaling in plants. Furthermore, I provided novel insights into JAZ-

mediated jasmonate signaling in plant developmental processes such as ROS accumulation, 

PCD and flower abscission. It is already known that functions of jasmonate-mediated 

defense responses are attenuated in the flowering stage of plants (Diezel et al., 2011), 

suggesting a possible transition of jasmonate function from defense to reproduction 

according to optimal defense theory. Each subgroup of JAZ proteins is likely to be involved 

in different parts of jasmonate signaling in different developmental stages of plants to fine-

tune growth, development, and defense responses, leading to better survival in nature. 

Our knowledge of mechanistic understanding in JAZ-mediated jasmonate signaling 

is constantly expanding as many new signaling components and target transcription factors 

are constantly reported; however, large unknown areas still remain to be clarified. (1) 

Research needs to identify the remaining co-regulators and target proteins that moderate 

pleiotropic downstream responses regulated by JAZ proteins. A growing number of 

functional studies is conducted using genetically modified plants and increasing numbers of 

plants species; JAZ proteins have been implicated in an increasing number of plant 

developmental processes such as secondary growth (interfascicular cambium initiation) 

(Sehr et al., 2010), phytochrome A-mediated shade responses (Robson et al., 2010), flower 

induction (Kim et al., 2011), and defense responses against biotic (Shoji et al., 2008), (Sun 

et al., 2011; Demianski et al., 2012; Oh et al., 2012) and abiotic (Ye et al., 2009; Seo et al., 

2011; Ismail et al., 2012; Zhu et al., 2012) stresses in plants; however, detailed mechanisms 

and interactions involved in these regulatory processes remain unclear. (2) More functional 

studies using different species of plants are clearly required. Although JAZ proteins are 

ubiquitous in flowering plants, most current studies are exclusively performed in 

Arabidopsis. However, plants have different ways to balance their growth, development 

and defense according to their specific environments, so it is of high priority to investigate 
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JAZ-mediated processes in alternative plant species with interesting physiologies and 

ecologies. (3) The precise roles of individual JAZ proteins in JAZ protein family are still 

largely unknown. Early studies of JAZ proteins proposed that JAZ proteins repress the 

MYC2 transcription factor, leading to the repression of jasmonate-responsive genes, and 

thus that JAZ protein function is highly redundant.  However, more recent research has 

demonstrated the existence and roles of several co-regulators and several target 

transcription factors other than MYC2 in regulating downstream responses by different 

stimuli (reviewed in (Browse and Wager, 2012; Kazan and Manners, 2012)). According to 

these trends, we can expect to discover specificity and functional diversity of individual 

JAZ proteins in various aspects of plants growth, development, and defense responses. 
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Summary 
Plants and herbivores formed one of the earliest terrestrial communities and co-

evolved in time, adapting to each other, both trying to maximize their own fitness. In the 

early 1960s, the first studies demonstrated that plant defense metabolites produced after 

herbivore attack can negatively affect herbivore performance via toxic or anti-digestive 

mechanisms. These effects resulted in specialization of herbivores and selection of their 

host plants according to species-specific spectra of defensive metabolites. To survive and 

maximize fitness in nature, plants learned to cope with multitudes of harmful factors, 

finding a proper balance between growth and defense that involves complex 

phytohormonal regulatory networks. One group of hormones, jasmonic acid (JA) and its 

derivatives, is known to control both growth and defense responses in plants. In the past 

decade, several core components of jasmonate signaling: the receptor SCFCOI1 complex, 

key negative regulators, JAZ (Jasmonate ZIM-domain) proteins, and the active jasmonate 

hormone (+)-7-iso-JA-L-Ile (JA-Ile) were discovered and contributed to our current 

understanding of regulatory mechanisms involved in jasmonate signaling. Nevertheless, it 

remained to decipher specific roles of these multiple players. In particular, the functional 

characterization of JAZ proteins remained unresolved, and I addressed this in my work.  

In my dissertation, I identified 12 novel JAZ proteins in the native tobacco 

Nicotiana attenuata, a summer annual plant native to southwestern North America. The 

NaJAZ genes showed spatially and temporally resolved expression patterns characterized 

by highly induced local and systemic accumulation of transcripts after stimulated 

herbivory. To identify the function of individual JAZ proteins by reverse genetics, I used 

two sets of transgenic plants that were silenced in the expression of either NaJAZd (irJAZd) 

or NaJAZh (irJAZh), using inverted repeat (ir) RNAi constructs to stably silence the 

specific JAZ genes. The silencing of either NaJAZd or NaJAZh strongly affected both plant 

defense responses and development.  

NaJAZh silencing altered the performance of the specialist herbivore Manduca sexta 

by inducing both constitutive and induced levels of direct defenses (trypsin protease 

inhibitors, TPIs and 17-hydroxygeranyllinalool diterpene glycosides, HGL-DTGs) and 

indirect defenses (volatile organic compounds, VOCs) in N. attenuata. In contrast, NaJAZh 

silencing repressed nicotine accumulation in leaves, which could be explained by a 
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crosstalk of JAZ genes: NaJAZh silencing also up-regulated several other JAZ genes such as 

NaJAZf, NaJAZj, and NaJAZb. In addition, I found that NaJAZh is required to repress 

programmed cell death in the leaves by regulating ROS levels, especially levels of 

hydrogen peroxide.  

I found that in contrast to NaJAZh, the NaJAZd protein plays only a minor role in 

defense, specifically in nicotine biosynthesis and/or transport. These changes, however, 

were not sufficient to alter herbivore performance on these plants. In contrast, NaJAZd 

silencing strongly affected the lifetime production of seed capsules by causing enhanced 

flower abscission in late flower developmental stages. I found that NaJAZd silencing 

significantly repressed JA and JA-Ile levels, but not ethylene, in flowers. Interestingly, the 

NaJAZd silencing-mediated flower abscission phenotype resembled the phenotype of 

NaMYB305 (homologue to PhEOBII)-silenced plants that I recently characterized as part of 

my dissertation. NaMYB305 plays a major role in flower opening and its silencing caused 

premature flower abscission. Notably, NaJAZd-silenced flowers had altered transcript 

abundance of this master flower regulator at the last open stage of flowering. I propose that 

NaJAZd may be required to maintain sufficient levels of MYB305 transcripts and prevent 

premature flower abscission: NaJAZd thus counteracts flower abscission by regulating JA, 

JA-Ile levels and/or expression of NaMYB305 gene in N. attenuata, permitting seed 

production in plants. 

Current identification of core components of jasmonate signaling, JAZ, SCFCOI 

complex, and JA-Ile, significantly contributed to the understanding of jasmonate signaling, 

and identification of the roles of several co-regulatory components and target transcription 

factors. However, one of the major gaps in our knowledge – the role of individual JAZ 

proteins – remained. In my dissertation, I showed for the first time that a single JAZ protein 

can control specific jasmonate-dependent defense and developmental processes, which 

lends more support to the hypothesis that JAZ proteins are functionally specialized both in 

defense and development, proposed by several previous studies. Apart from defense, my 

work provided several novel insights into the function of jasmonates and JAZ regulators in 

plant development, including spontaneous necrosis, ROS accumulation, flowering and seed 

development.
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Zusammenfassung 
Pflanzen und Pflanzenfresser bilden eine der frühesten terrestrischen 

Gemeinschaften. Sie entwickelten sich gemeinsam und versuchen durch gegenseitiges 

aneinander Anpassen ihre eigene Fitness zu maximieren. Erste Studien in den frühen 

1960er Jahren zeigten, dass pflanzliche Abwehrstoffe nach Fraßattacken produziert werden 

und in Form von Gift oder als verdauungshemmende Stoffe die Leistung von 

Pflanzenfressern negative beeinflussen können. Diese Effekte führten zu einer 

Spezialisierung von Pflanzenfressern und der Auswahl ihrer Wirtspflanzen nach 

artspezifischen Aspekten der Abwehrstoffe. Um zu überleben und die darwinsche Fitness 

zu maximieren, haben die Pflanzen gelernt, mit einer Vielzahl von schädlichen Faktoren 

umzugehen und ein ausgewogenes Gleichgewicht zwischen Wachstum und Verteidigung 

mit Hilfe eines komplexen, regulatorischen Pflanzenhormonnetzwerkes zu finden. Eine 

spezielle Gruppe der Pflanzenhormone, die Jasmonsäure (JA) und ihren Derivaten, sind 

dafür bekannt, dass sie sowohl das Wachstum als auch die Abwehrreaktionen in Pflanzen 

regulieren. Im letzten Jahrzehnt wurden mehrere Kernkomponenten der Jasmonat-

Signalkette gefunden: der Jasmonat-rezeptor SCFCOI1 Komplex, negative Regulatoren der 

Jasmonat-Signalkaskade (JAZ, Jasmonate ZIM-Domain) und das aktive Jasmonat-Derivat 

(+)-7-iso-JA-L-Ile (JA-Ile), die dazu beigetragen haben, unser gegenwärtiges Verständnis 

der Regulationsmechanismen in der Jasmonat-Signalkette zu verstehen. Dennoch müssen 

die spezifischen Rollen dieser Komponenten erst noch entschlüsselt werden. In meiner 

Arbeit befasste ich mich speziell mit der Rolle der JAZ Proteine und deren funktioneller 

Charakterisierung, da diese Fragen bisher ungelöst blieben. 

In meiner Dissertation identifizierte ich 12 neue JAZ Proteine im wilden Tabak 

(Nicotiana attenuata), einer einjährigen Pflanze, die im südwestlichen Nordamerika 

heimisch ist. Die NaJAZ Gene waren durch ein räumlich und zeitlich aufgelöstes 

Expressionsmuster durch stark induzierte lokale und systemische Akkumulation von 

Transkripten nach Fraß Attacke gekennzeichnet. Um die Funktion der einzelnen JAZ 

Proteine mittels reverser Genetik zu identifizieren, verwendete ich zwei Sätze von stabilen 

transgenen Pflanzen, die, mittels selbstkompatibler, sogenannter inverted repeat (ir) RNAi 

silencing-Konstrukte, entweder in der Expression von NaJAZd oder NaJAZh herunter-
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reguliert wurden. Das Silencing beider Gene, NaJAZd oder NaJAZh, zeigte starke 

Auswirkungen auf die Abwehrreaktion und Entwicklung der betroffenen Pflanze. 

In N. attenuata veränderte NaJAZh silencing das Wachstum der Raupen des 

Tabakschwärmers Manduca sexta durch Erhöhung von sowohl konstitutiven und 

induzierbaren direkten Abwehrstoffen wie Trypsin-Protease-Inhibitoren (TPIs) und 17-

hydroxygeranyllinalool Diterpenglycoside (HGL-DTGS) als auch von indirekt zu 

Verteidigung beitragenden Duftstoffen (volatile organic compounds, VOCs). Im Gegensatz 

dazu zeigten ir-NaJAZh Pflanzen eine verringerte Akkumulation von Nikotin in den 

Blättern. Diese Beobachtung könnte durch eine Vernetzung der JAZ-Signalkaskade erklärt 

werden, denn NaJAZh silencing führte zu einer Hochregulierung mehreren anderen JAZ 

Gene wie NaJAZf, NaJAZj und NaJAZb. Darüber hinaus konnte ich zeigen, dass NaJAZh 

auch dafür erforderlich ist, den programmierten Zelltod nach Verwundung in den Blättern 

durch Regulierung der Bildung von reaktiven Sauerstoffverbindungen (ROS) insbesondere 

Wasserstoffperoxid zu unterdrücken. 

In meiner Arbeit konnte ich außerdem zeigen, dass NaJAZd im Gegensatz zu 

NaJAZh nur eine untergeordnete Rolle in der Verteidigung spielt, nämlich bei der 

Nikotinbiosynthese und/oder dem Nikotintransport. Diese Änderungen in ir-NaJAZd 

Pflanzen reichten jedoch nicht aus, um die Raupen des Tabakschwärmers zu beeinflussen. 

Nichtsdestotrotz führte NaJAZd silencing zu einer starken Beeinflussung der Dauer der 

Samenkapselproduktion durch vermehrtes Abwerfen von Blüten in den späten 

Entwicklungsstadien. Ich fand heraus, dass NaJAZd silencing die Akkumulation von JA 

und JA-Ile in den Blüten deutlich unterdrückt, nicht aber die Menge von Ethylen. 

Interessanterweise ähnelte dieser  ir-NaJAZd Blütenabwurf dem Phänotyp von NaMYB305 

(master flower regulator, homolog PhEOBII) gesilencten Pflanzen, die ich als Teil meiner 

Arbeit charakterisierte. NaMYB305 spielt eine wichtige Rolle beim Öffnen der Blüten und 

dessen Herunterregulierung verursacht ein vorzeitiges Abwerfen der Blüten. 

Bemerkenswerterweise zeigten ir-NaJAZd Pflanzen auch veränderte Transkriptlevel von 

MYB305 in offenen Blüten. Dies induziert, dass NaJAZd möglicherweise in der 

Regulierung von MYB305 eine Rolle spielt und verhindert, dass Blüten vorzeitig 

abgeworfen werden: NaJAZd wirkt durch die Regulierung von JA und JA-Ile und/oder der 

Expression von NaMYB305 dem Blütenabwurf vor und ermöglicht die Samenproduktion 

von N. attenuata. 
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Die Identifikation von Kernkomponenten der Jasmonat -Signalkette (JAZ, SCFCOI 

Komplex und JA-Ile) als auch die Identifikation von mehreren Co-regulatorische 

Komponenten und Transkriptionsfaktoren trug im Wesentlichen zum Verständnis der 

Jasmonat -Signalkette bei. Eine Frage blieb jedoch unbeantwortet - die funktionale Rolle 

der einzelnen JAZ Proteine. In meiner Dissertation habe ich zum ersten Mal gezeigt, dass 

ein einzelnes JAZ Protein spezifische Jasmonat-abhängige Verteidigungs- und 

Entwicklungsprozesse kontrolliert, was die Hypothese anderer Studien unterstützt, dass 

JAZ Proteine sowohl für Verteidigungs- als auch Entwicklungsprozesse funktionell 

spezialisiert sind. Neben pflanzlichen Verteidigungsprozessen gibt meine Arbeit neue 

Einblicke in die Funktion von Jasmonaten und JAZ-Regulatoren in der Pflanzen-

entwicklung, einschließlich spontaner Nekrose, ROS Akkumulation und Blüten- sowie 

Samenbildung. 
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